Current Nanomaterials, a peer reviewed journal publishes full-length/mini reviews, original research articles and thematic issues on experimental and applied research on nanomaterials. The scope covers the synthesis, structure, properties, characterization and application of nanomaterials. The journal will cover all areas ...read more
eISBN: 978-981-5256-08-6
ISBN: 978-981-5256-09-3
Thin Film Nanomaterials: Synthesis, Properties and Innovative Energy Applications provides a comprehensive overview of the synthesis, properties, and cutting-edge applications of thin film nanomaterials. Each chapter explores different aspects of thin film synthesis and its application in energy devices, showcasing different metal-based and carbon nanomaterials . The book begins with a discussion on the synthesis and characterization of cadmium and zinc sulphide thin films for opto-electronics energy devices. Subsequent chapters delve into critical reviews of CIGS thin film nanomaterials, deposition techniques for metal oxide nanocomposite films, and nanostructured TiO2@carbon films for photocatalytic applications. Bandgap engineering, optical properties of composite films, and recent advancements in metal oxide thin films are also covered. Additionally, the synthesis and characteristics of iron oxide films for solar cell and green energy storage applications are discussed. Chapters on challenges and future prospects of CNT-based cathode emitters and advanced characterizations of nanocrystalline ferrimagnetic thin films provide valuable insights into emerging technologies. This book is an essential resource for professors, scientists, engineers, research scholars, postdocs, and undergraduate/graduate students seeking to explore the forefront of nanomaterials and their applications in energy systems.
eISBN: 978-981-5223-10-1
ISBN: 978-981-5223-11-8
The discovery of new materials and the manipulation of their exotic properties for device fabrication is crucial for advancing technology. Nanoscience, and the creation of nanomaterials have taken materials science and electronics to new heights for the benefit of mankind. Advanced Materials and Nanosystems: Theory and Experiment covers several topics of nanoscience research. The compiled chapters aim to update readers by highlighting modern developments in materials science theory and experiments. The significant role of new materials in future technology is also demonstrated. The book serves as a reference for curriculum development in technical institutions and research programs in the field of physics, chemistry and applied areas of science like materials science, chemical engineering and electronics. This part covers 11 topics in these areas: 1- Role of Plasmonic Metal-semiconductor Heterostructure in Photo Catalytic Hydrolysis and Degradation of Toxic Dyes 2 -BaZrO3-Based Ceramics and Ceramic Composites as Smart Materials for Advanced Applications 3 -A High-capacity Anode Material for Lithium-ion Batteries is Sili-graphene Type SiC3 4 -An Introduction to the Fabrication of White Light-emitting Diodes 5 -Electronic and Piezoelectric Properties of Nonmetal Doped II-VI Monolayer Compounds 6- A Theoretical Investigation on the New Quaternary MAX-phase Compounds 7- Surface Segregation in Pt 3 Nb and Pt 3 Ti using Density Functional-based Methods. 8- Nanoparticles and Environmental Health 9 -Investigation for Optimum site for adsorption and population effect of Lithium on Silicene Monolayer 10- Strategies for Synthesizing Metal Oxide Nanoparticles and the Challenges 11- Heterogeneous Semiconductor Photocatalysis for Water Purification: Basic Mechanism and Advanced Strategies
eISBN: 978-981-5256-35-2
ISBN: 978-981-5256-36-9
This book provides valuable knowledge about environmentally friendly methods of nanoparticle synthesis. The contents present information about the subject from synthesis, characterization, advantages, disadvantages, route of administrations up to effects of drug combinations. Starting with an introduction to the concept of green nanoparticles, the book summarizes different types of plant extracts and their components. Green methods for preparing nanotherapeutic agents utilizing algae and marine plants to synthesize metal based nanoparticles are also explained. The book also places an emphasis on the improvement of metal nanoparticle formulations with polymers for antibacterial applications. A detailed review of the interaction of nanoparticles with or without drugs rounds the contents, with a guide to easily understand their site of action along with suitable reactions in the body. This book is a primer on nanoparticle synthesis for pharmacology or nanomedicine programs that focus on sustainable and environmentally friendly methodologies for synthesizing therapeutics.
eISBN: 978-981-5238-24-2
ISBN: 978-981-5238-25-9
Nanoelectronic Devices and Applications presents reviews on recent advances in nanoelectronic device design and new directions for their practical use. The volume includes 16 edited chapters that cover novel material systems, band engineering, modelling and simulations, fabrication and characterization techniques, and their emerging applications. The discussions presented in this book are based on current understandings on innovations and future trends, and references are provided for advanced scholars. Chapter 1 presents an overview of recent innovations and future prospects in III-nitride semiconductor technologies for RF, power, digital and quantum applications. Chapter 2 reports new trends in GaN-based optical devices for sensing and micro-display applications. Chapter 3 shows current interests in nanophosphors and their utilizations in improving device performance of InGaN nanowire light-emitting diodes (LEDs). Recent studies on the effect of potential profile on the carrier transport in AlGaAs based double quantum well structures and their applications are presented in Chapter 4. The recent progress in high-electron-mobility transistors (HEMTs) is presented through Chapters 5, 6, and 7. A comprehensive review on β-Ga2O3 emphasizing material properties, growth approaches, and its applications for next-generation high-power nanoelectronics; the effect of dielectric layers on the characteristics of AlN/β-Ga2O3 HEMTs are presented in Chapter 8 and 9 respectively. Chapters 10-14 summarize the recent studies in field-effect transistors (FETs) adopting different materials and structures. Chapter 15 presents current research in 2D Tungsten Diselenide (WSe2) with special focus on the material properties, device structures, applications, and challenges. Finally, Chapter 16 presents a systematic review of memristors, and memristive semiconductor devices. The book is intended as a primary resource for elective subjects in advanced electronics and computer engineering courses at university level. Researchers and industry professionals will also learn about emerging trends and state-of-the-art research in nanoelectronics.
eISBN: 978-981-5196-77-1
ISBN: 978-981-5196-78-8
Advanced Materials for Emerging Applications is a monograph on emerging materials'; materials that have observable differences in physical properties and manufacturing requirements when compared to existing materials and industrial processes. The volume aims to showcase novel materials that can be used in advanced technology and innovative products. The editors have compiled 17 chapters grouped into 3 sections: 1) Metals and Alloys, 2) Composite materials, and 3) Other materials. Chapters 1-5 discuss recent advances in friction stir welding, suitability of nickel-base shape memory alloys, thermal cycling studies of nickel-based shape memory alloys, nitrogen additions to stainless steel, and the evolution of zirconium alloy. Chapters 6-11 cover topics such as additive manufacturing of metal matrix composites, composite materials for biomedical applications, aluminum and magnesium metal matrix composites, aluminum nanocomposites for automobile applications, enhancing the strength of aluminum-boron carbide composites, and sisal fibers reinforced composites. Lastly, chapters 13-17 explore smart hydrogels, engineered iron-oxide nanomaterials for magnetic hyperthermia, emerging sustainable material technology for fire safety, recent advances in unconventional machining of smart alloys, and critical parameters influencing high-strain rate deformation of materials. This monograph provides information for a broad readership including material and manufacturing engineers, researchers, students (at undergraduate levels or above) and entrepreneurs interested in manufacturing new products.
eISBN: 978-981-5223-43-9
ISBN: 978-981-5223-44-6
This book provides a comprehensive overview of metal matrix composite manufacturing, including fabrication methods, characterization techniques, and manufacturing applications. 10 chapters cover fundamental and applied topics on matrix metal composites. The book is a resource for all readers seeking to gain an in-depth understanding of metal matrix composites with its relevance to the modern industry. Key Features - Includes fully referenced contributions by experts in materials science - Provides an introduction to the subject, and a future prospective for a broad range of readers - Reviews current knowledge on fabrication techniques and structure property relationships of metal matrix composites - Includes dedicated chapters for reinforced composites (carbon fiber, carbon nanotubes, aluminium) - Includes guidance on material wear and tear and - Provides an investigation for process optimization for EDM for newly developed composites It is designed to be an essential resource for students and professionals in the field of materials science and engineering, as well as researchers and engineers working on metal matrix composite in manufacturing industries.
eISBN: 978-981-5136-86-9
ISBN: 978-981-5136-87-6
Naturally-derived biomaterials invite immense interest from diverse segments of science and engineering. Recent decades have witnessed a leap in knowledge and efforts in ongoing research with biomaterials as synthons, yet biomaterial research never fails to create surprises. This book summarizes modern knowledge of bioderived materials for beginners in research and advanced readers in materials science. The book lays the foundations of understanding the design and development of mimetic peptides and enzyme mimetic bioinorganic catalysts, including the toolsets used in the process. Next, the book demonstrates different approaches for obtaining task-specific designer hydrogels. Additional topics covered in the book are tissue engineering and regenerative medicine. From this point, the book presents information on complex biomaterials systems: bacterial cellulose, cell membrane architecture for nanocomposite material design, and whole cellular microorganisms. Chapters provide applied knowledge with information on the strategies used to design novel biomaterials for applications such as drug delivery, therapy and controlled chemical synthesis. In summary, this book brings together a wealth of information on bioderived materials with versatile applications, derived from different sources, such as plant derivatives and microorganisms (in part or whole as synthons), benefitting readers from multidisciplinary backgrounds.
eISBN: 978-981-5165-64-7
ISBN: 978-981-5165-65-4
Nanoscale Field Effect Transistors: Emerging Applications is a comprehensive guide to understanding, simulating, and applying nanotechnology for design and development of specialized transistors. This book provides in-depth information on the modeling, simulation, characterization, and fabrication of semiconductor FET transistors. The book contents are structured into chapters that explain concepts with simple language and scientific references. The core of the book revolves around the fundamental physics that underlie the design of solid-state nanostructures and the optimization of these nanoscale devices for real-time applications. Readers will learn how to achieve superior performance in terms of reduced size and weight, enhanced subthreshold characteristics, improved switching efficiency, and minimal power consumption. Key Features: Quick summaries: Each chapter provides an introduction and summary to explain concepts in a concise manner. In-Depth Analysis: This book provides an extensive exploration of the theory and practice of nanoscale materials and devices, offering a detailed understanding of the technical aspects of Nano electronic FET transistors. Multidisciplinary Approach: It discusses various aspects of nanoscale materials and devices for applications such as quantum computation, biomedical applications, energy generation and storage, environmental protection, and more. It showcases how nanoscale FET devices are reshaping multiple industries. References: Chapters include references that encourage advanced readers to further explore key topics. Designed for a diverse audience, this book caters to students, academics and advanced readers interested in learning about Nano FET devices.
eISBN: 978-981-5196-68-9
ISBN: 978-981-5196-69-6
This book explores cutting-edge biocarbon polymer composites. The book brings together nine edited chapters that explore the development, properties, and applications of these eco-friendly materials, highlighting their potential to transform industries and reduce the environmental impact of traditional polymers. Spanning a range of critical topics, this book begins with an introduction to biocarbon and polymer materials, providing a solid foundation. It then progresses into the latest research on biocarbon sources, processing techniques, and characterization methods. Subsequent chapters cover the mechanical, thermal, and electrical properties of biocarbon polymer composites, along with their applications in diverse industries such as automotive, construction, and packaging. Contributors highlight real-world case studies and examples to showcase the practical relevance of these materials. Readers will gain a comprehensive understanding of the science and technology behind biocarbon polymer composites, enabling them to make informed decisions in materials selection and development. In an era of increasing environmental consciousness, this book emphasizes the eco-friendly nature of biocarbon composites, offering sustainable alternatives to traditional plastics. Additionally, this book bridges the information gaps between different disciplines and it is intended for a wide range of readers, from materials scientists and engineers to environmentalists and industry policymakers.
eISBN: 978-981-5136-71-5
ISBN: 978-981-5136-72-2
Explore the world of advanced materials and their manufacturing processes through this authoritative and enlightening reference. Discover how these innovations are shaping the future of high-tech industries and making a profound impact on our world. Manufacturing and Processing of Advanced Materials compiles current research and updates on development efforts in advanced materials, manufacturing, and their engineering applications. The book presents 22 peer-reviewed chapters that cover new materials and manufacturing processes. Key Topics Materials for the Future: Properties, classifications, and harmful effects of advanced engineering Innovative Manufacturing Techniques: Nanotechnology in material processing and manufacturing innovation. Advanced Welding and Joining: laser welding and friction stir welding in manufacturing composite materials. Sustainable Practices: 4. Eco-Friendly machining, water vapor cutting fluid, for high-speed milling., natural fiber reinforcement with materials like bamboo leaves. Advanced Materials Characterization and Modeling: Carbon nanotube (CNT)-reinforced nanocomposites and tribology for durable and reliable materials ensuring reliability. Materials for Energy and Electronics: Energy Storage Innovations and smart materials for electronic devices Novel Drilling and Machining Processes: Microwave drilling, electric discharge machining and die-sinking electric discharge machining for metal matrix composites. Innovations in Nanoparticle Production: Spark discharge method (SDM) for advanced nanoparticle production. The book caters to a diverse audience, offering an invaluable resource for researchers, engineers, graduate students, and professionals in materials science, engineering, chemistry, and physics. By enhancing their knowledge and expertise, readers are poised to become key contributors to various industries and technological advancements.