Chemical Composition and Biological Activities of Essential Oils of Echinops spinosus and Carlina vulgaris Rich in Polyacetylene Compounds

Page: [563 - 570] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: The essential oils of aromatic plants are increasingly used as new biocontrol alternative agents against microbial strains and insect pests of fruits and vegetables, because of their specificity of biodegradable nature.

Objectives: This work, treats for the first time the chemical composition, antioxidant, antifungal and insecticidal activities of the essential oils obtained from Echinops spinosus and Carlina vulgaris from Algeria.

Methods: The chemical compositions of oils were investigated using GC-FID and GC/MS. Antioxidant activity was assessed using three methods (2,2-diphenyl-1-picrylhydrazyl, Ferric-Reducing Antioxidant Power (FRAP) and β-carotene assay). Fumigation toxicity of E. spinosus and C. vulgaris essential oils was tested against Bactrocera oleae pests of olives.

Results: Eighteen and thirteen components representing 95.4 and 97.9% were identified in root essential oils from Echinops spinosus and Carlina vulgaris, respectively. Polyacetylenes were the majority compounds of essential oils. 5(But-1-yn-3-enyl)2,2′bithiophene and α-terthienyle were highly dominants in the E. spinosus essential oil from the roots (54.4 and 26.3%, respectively). Roots of C. vulgaris produce an essential oil dominated by carlina oxide (33.7%) and 13-methoxy carlina oxide (11.5%). Comparison of the antioxidant activity of E. spinosus essential oil showed more important antioxidant effect than C. vulgaris essential oil and the synthetic antioxidant (BHT). Evaluation of the antifungal activity showed an interesting efficiency of both essential oils against P. expansum and A. niger with EC50s varied from 5 to 14.5 mg/L. C. arvensis essential oil exhibited good larvicidal properties. At the concentration of 325 μL/L air, the oil caused mortality of 100% for Bactrocera Oleae adults after 24 h of exposure.

Conclusion: Both essential oils rich to polyacetylenes and polythiophenes.components have shown interesting biological activities, which suggests that plants have the potential to be used as biopesticides and provide an alternative to chemical pesticides.

Keywords: Biological activities, C. vulgaris, chemical pesticides, E. spinosus, essential oils, insecticidal effect.

Graphical Abstract

[1]
Russo A, Perri M, Cione E, Di Gioia ML, Nardi M, Cristina Caroleo M. Biochemical and chemical characterization of Cynara cardunculus L. extract and its potential use as co-adjuvant therapy of chronic myeloid leukemia. J Ethnopharmacol 2017; 202: 184-91.
[http://dx.doi.org/10.1016/j.jep.2017.03.026] [PMID: 28323047]
[2]
Sindona G, Caruso A, Cozza A, et al. Anti-inflammatory effect of 3,4-DHPEA-EDA [2-(3,4 -hydroxyphenyl) ethyl (3S, 4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate] on primary human vascular endothelial cells. Curr Med Chem 2012; 19(23): 4006-13.
[http://dx.doi.org/10.2174/092986712802002536] [PMID: 22680639]
[3]
Nardi M, Bonacci S, De Luca G, et al. Biomimetic synthesis and antioxidant evaluation of 3,4-DHPEA-EDA [2-(3,4- hydroxyphenyl) ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4- enoate]. Food Chem 2014; 162: 89-93. [2-(3,4 -hydroxyphenyl) ethyl (3S, 4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate)]. 2014.
[http://dx.doi.org/10.1016/j.foodchem.2014.04.015] [PMID: 24874361]
[4]
Nardi M, Bonacci S, Cariati L, et al. Synthesis and antioxidant evaluation of lipophilic oleuropein aglycone derivatives. Food Funct 2017; 8(12): 4684-92.
[http://dx.doi.org/10.1039/C7FO01105A] [PMID: 29160876]
[5]
Ain Sebaa N, Tabet Zatla A, Dib MA, Tabti B, Costa J, Alain M. Antifungal activity of essential oil and hydrosol extract of Ballota nigra L. and their protective effects against the black rot of tomatoes. Curr Nutr Food Sci 2018. [Epub ahead of print].
[6]
Bitsindou M, Lejoly L. Les plantes employées contre les affections hépatiques en médecine traditionnelle africaine. Actes du 2ème Colloque Européen d’Ethnopharmacologie et de la Conférence internationale d’Ethnomédecine. 163-6.
[7]
Quezel P, Santa S. Nouvelle flore de l’Algérie et des régions désertiques méridionale. Paris: National Center for Scientific Research 1963.
[8]
Kit T. Seven new species of Echinops (Asteraceae). Ann Bot Fenn 1995; 32(2): 117-26.
[9]
Ni ZY, Nagashima Y, Zhang ML, et al. 11-Hydroxyisocom-2-en-5-one, a new sesquiterpenoid from Echinops spinosissimus. Chem Nat Compd 2013; 4(49): 632-4.
[http://dx.doi.org/10.1007/s10600-013-0696-8]
[10]
Bouattour E, Fakhfakh J, Affes M, Chawech R, Damak M, Jarraya R. Chemical constituents of Echinops spinosus From Tunisia. J Nat Comp 2017; 53(5): 1-4.
[http://dx.doi.org/10.1007/s10600-017-2179-9]
[11]
Dong M, Cong B, Yu SH, et al. Echinopines A and B: sesquiterpenoids possessing an unprecedented skeleton from Echinops spinosus. Org Lett 2008; 10(5): 701-4.
[http://dx.doi.org/10.1021/ol702629z] [PMID: 18251544]
[12]
Strzemski M, Wójciak-Kosior M, Sowa I, et al. Carlina species as a new source of bioactive pentacyclic triterpenes. Ind Crops Prod 2016; 94: 498-504.
[http://dx.doi.org/10.1016/j.indcrop.2016.09.025]
[13]
Chalchat J, Djordjevic S, Gorunovic M. Composition of the essential oil from the root of Carlina acaulis L. Asteraceae. J Essent Oil Res 1996; 8(5): 577-8.
[http://dx.doi.org/10.1080/10412905.1996.9700696]
[14]
Strzemski M, Wójciak-Kosior M, Sowa I, et al. Carlina vulgaris L. as a source of phytochemicals with antioxidant activity. Oxid Med Cell Longev 2017; 20171891849
[http://dx.doi.org/10.1155/2017/1891849] [PMID: 29181123]
[15]
Jennings W, Shibamoto T. Analytical considerations Qualitative analysis of flavour and fragrance volatiles by glass-capillary gas chromatography. 1st ed. New York: Academic Press 1980; pp. 1-27.
[http://dx.doi.org/10.1016/B978-0-12-384250-3.50004-0]
[16]
König WA, Hochmuth DH, Joulain D. Terpenoids and related constituents of essential oils Library of Mass Finder. Hamburg: Institute of Organic Chemistry 2001.
[17]
National Institute of Standards and Technology. 2008.Available from: www.webbook.nist.gov/chemistry
[18]
Mc Lafferty FW, Stauffer DB. The Wiley/NBS Registry of Mass Spectra Data New-York. Wiley-Interscience 1988.
[19]
Mc Lafferty FW, Stauffer DB. Wiley Registry of Mass Spectral Data. In: Mass Spectrometry Library Search System Bench-Top/PBM version 310d Palisade. Newfield 1994.
[20]
National Institute of Standards and Technology. PC Version 17 of the NIST/EPA/NIH Mass Spectral Library. Norwalk, CT, USA: Perkin-Elmer Corp. 1999.
[21]
Djabou N, Lorenzi V, Guinoiseau E, et al. Phytochemical composition of Corsican teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control 2013; 30(1): 354-63.
[http://dx.doi.org/10.1016/j.foodcont.2012.06.025]
[22]
Belabbes R, Dib MEA, Djabou N, et al. Chemical variability, antioxidant and antifungal activities of essential oils and hydrosol extract of Calendula arvensis L. from Western Algeria. Chem Biodivers 2017; 14(5)e1600482
[http://dx.doi.org/10.1002/cbdv.201600482] [PMID: 28109063]
[23]
Tian J, Ban X, Zeng H, Huang B, He J, Wang Y. In vitro and in vivo activity of essential oil from dill (Anethum graveolens L.) against fungal spoilage of cherry tomatoes. Food Control 2011; 22(12): 1992-9.
[http://dx.doi.org/10.1016/j.foodcont.2011.05.018]
[24]
Pandey DK, Tripathi NN, Tripathi RD. Fungitoxic and phytotoxic properties of essential oil of Hyptissu aveolens. J Plant Dis Prot 1982; 89: 344-9.
[25]
Bouayad Alam S, Dib MEA, Djabou N, et al. Essential oils as biocides for the control of fungal infections and devastating pest (Tuta absoluta) of tomato (Lycopersicon esculentum Mill.). Chem Biodivers 2017; 14(7)e1700065
[http://dx.doi.org/10.1002/cbdv.201700065] [PMID: 28422413]
[26]
Abbott WS. A method for computing the effectiveness of an insecticide. J Econ Entomol 1925; 18: 265-7.
[http://dx.doi.org/10.1093/jee/18.2.265a]
[27]
Radulović N, Denić M. Essential oils from the roots of Echinops bannaticus Rochel ex Schrad, and Echinops sphaerocephalus L. (Asteraceae): Chemotaxonomic and Biosynthetic Aspects. Chem biodiverse 2013; 10(4): 658-76.
[28]
Menut C, Lamaty G, Weyerstahl P, Marschall H, Seelmann I, Zollo PH. Aromatic plants of Tropical Central Africa. Part I. Tricyclic sesquiterpenes from the root essential oil of Echinops giganteus var. lelyi C. D. Adams. Flavour Fragrance J 1997; 6(12): 415-21.
[http://dx.doi.org/10.1002/(SICI)1099-1026(199711/12)12:6<415:AID-FFJ666>3.0.CO;2-T]
[29]
Tariku Y, Hymete A, Hailu A, Rohloff J. In vitro evaluation of antileishmanial activity and toxicity of essential oils of Artemisia absinthium and Echinops kebericho. Chem Biodivers 2011; 8(4): 614-23.
[http://dx.doi.org/10.1002/cbdv.201000331] [PMID: 21480507]
[30]
Djordjevic S, Petrovic S, Ristic M, Djokovic D. Composition of Carlina acanthifolia root essential oil. Chem Nat Compd 2015; 4(44): 410-2.
[31]
Tepe B, Sokmen M, Akpulat H, Sokmen A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem 2006; (95): 200-4.
[http://dx.doi.org/10.1016/j.foodchem.2004.12.031]
[32]
Zhao MP, Liu QZ, Liu Q, Liu ZL. Identification of larvicidal constituents of the essential oil of Echinops grijsii roots against the three species of mosquitoes. Molecules 2017; 22(2): 1-11.
[http://dx.doi.org/10.3390/molecules22020205] [PMID: 28134799]
[33]
Tang X, Chen S, Wang L. Isolation and Insecticidal activity of farnesol from Stellera chamaejasme. Asian J Chem 2001; 3(23): 1233-5.
[34]
Jin W, Shi Q, Hong C, Cheng Y, Ma Z, Qu H. Cytotoxic properties of thiophenes from Echinops grijissi Hance. Phytomedicine 2008; 15(9): 768-74.
[http://dx.doi.org/10.1016/j.phymed.2007.10.007] [PMID: 18068965]
[35]
Nakano H, Cantrell CL, Mamonov LK, Osbrink WL, Ross SA. Echinopsacetylenes A and B, new thiophenes from Echinops transiliensis. Org Lett 2011; 13(23): 6228-31.
[http://dx.doi.org/10.1021/ol202680a] [PMID: 22066834]
[36]
Hudson JB, Graham EA, Micki N, Hudson L, Towers GH. Antiviral activity of the photoactive thiophene alpha-terthienyl. Photochem Photobiol 1986; 44(4): 477-82.
[http://dx.doi.org/10.1111/j.1751-1097.1986.tb04695.x] [PMID: 3024189]
[37]
Herrmann F, Hamoud R, Sporer F, Tahrani A, Wink M. Carlina oxide--a natural polyacetylene from Carlina acaulis (Asteraceae) with potent antitrypanosomal and antimicrobial properties. Planta Med 2011; 77(17): 1905-11.
[http://dx.doi.org/10.1055/s-0031-1279984] [PMID: 21678234]