Relationship between Dietary Diversity Score and Dietary Total Antioxidant Capacity with some Cardio-Metabolic Risk Factors and Pro-Oxidant- Antioxidant Balance in Overweight and Obese Postmenopausal Women
  • * (Excluding Mailing and Handling)

Abstract

Background: Considering the significance of relation between dietary diversity and dietary antioxidants in the mechanism of obesity and related outcomes and due to limited studies in postmenopausal women, the present research was designed to evaluate the relationship between Dietary Diversity Score (DDS) and Dietary Total Antioxidant Capacity (DTAC) with some cardio- metabolic risk factors and Pro-Oxidant-Antioxidant Balance (PAB) level in overweight and/or obese postmenopausal women.

Methods: The research participants comprised 128 overweight and/or obese postmenopausal women aged 45-65 years attending the health centers. Anthropometric measures, e.g., weight, height, waist and hip circumferences, were obtained. Serum lipid profile, glucose, and insulin were determined, and the Homeostasis Model Insulin Resistance (HOMA-IR) was estimated. PAB was determined. DDS and DTAC were determined using information from the Food Frequency Questionnaire (FFQ).

Results: Compared to those in the first tertile, there was no significant relationship between anthropometric and biochemical data with DDS neither among participants in the second tertile nor the third tertile (P>0.05). Furthermore, considerable negative relationships were only observed between waist-to-hip ratio (P=0.035) and waist-to-height ratio (P=0.006) with DTAC among participants in the second tertile compared with those in the first tertile. Also, insulin and HOMA-IR were inversely related to DTAC among participants in the second tertile (both P<0.001) and the third tertile (P=0.004 and P=0.009, respectively) compared to those in the first tertile. There was a considerable negative relationship between PAB and DTAC (P=0.036) among participants in the third tertile compared with those in the first tertile.

Conclusion: DDS was not correlated with a lower risk of obesity, abdominal adiposity, and better metabolic features. Furthermore, this study demonstrated that higher DTAC was correlated with lower abdominal obesity, insulin, HOMA-IR, and PAB levels.

[1]
Lin, X.; Li, H. Obesity: Epidemiology, pathophysiology, and therapeutics. Front. Endocrinol., 2021, 12, 706978.
[http://dx.doi.org/10.3389/fendo.2021.706978] [PMID: 34552557]
[2]
WHO. Obesity and overweight. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
[3]
Biswas, T.; Uddin, M.J.; Mamun, A.A.; Pervin, S.; P Garnett, S. Increasing prevalence of overweight and obesity in Bangladeshi women of reproductive age: Findings from 2004 to 2014. PLoS One, 2017, 12(7), e0181080.
[http://dx.doi.org/10.1371/journal.pone.0181080] [PMID: 28753680]
[4]
Jukaku, S.A.; Williams, S.R.P. The cause of obesity is multifactorial but GPs can do more. BMJ, 2021, 373(956), n956.
[http://dx.doi.org/10.1136/bmj.n956] [PMID: 33849923]
[5]
Gadgil, M.D.; Anderson, C.A.M.; Kandula, N.R.; Kanaya, A.M. Dietary patterns are associated with metabolic risk factors in South Asians living in the United States. J. Nutr., 2015, 145(6), 1211-1217.
[http://dx.doi.org/10.3945/jn.114.207753] [PMID: 25904730]
[6]
Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, F. Dietary diversity score and cardiovascular risk factors in Tehranian adults. Public Health Nutr., 2006, 9(6), 728-736.
[http://dx.doi.org/10.1079/PHN2005887] [PMID: 16925878]
[7]
Food and Agriculture Organization (FAO) Guidelines for Measuring Household and Individual Dietary Diversity; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011.
[8]
Kant, A.K.; Schatzkin, A.; Harris, T.B.; Ziegler, R.G.; Block, G. Dietary diversity and subsequent mortality in the first National Health and nutrition examination survey epidemiologic follow-up study. Am. J. Clin. Nutr., 1993, 57(3), 434-440.
[http://dx.doi.org/10.1093/ajcn/57.3.434] [PMID: 8382446]
[9]
Azadbakht, L.; Mirmiran, P.; Azizi, F. Dietary diversity score is favorably associated with the metabolic syndrome in Tehranian adults. Int. J. Obes., 2005, 29(11), 1361-1367.
[http://dx.doi.org/10.1038/sj.ijo.0803029] [PMID: 16116493]
[10]
Gholizadeh, F.; Moludi, J.; Yagin, L.N.; Alizadeh, M.; Nachvak, M.S.; Abdollahzad, H.; Mirzaei, K.; Mostafazadeh, M. The relation of Dietary diversity score and food insecurity to metabolic syndrome features and glucose level among pre-diabetes subjects. Prim. Care Diabetes, 2018, 12(4), 338-344.
[http://dx.doi.org/10.1016/j.pcd.2018.03.003] [PMID: 29650341]
[11]
Jayawardena, R.; Byrne, N.M.; Soares, M.J.; Katulanda, P.; Yadav, B.; Hills, A.P. High dietary diversity is associated with obesity in Sri Lankan adults: An evaluation of three dietary scores. BMC Public Health, 2013, 13(1), 314.
[http://dx.doi.org/10.1186/1471-2458-13-314] [PMID: 23566236]
[12]
Karimbeiki, R.; Pourmasoumi, M.; Feizi, A.; Abbasi, B.; Hadi, A.; Rafie, N.; Safavi, S.M. Higher dietary diversity score is associated with obesity: A case–control study. Public Health, 2018, 157, 127-134.
[http://dx.doi.org/10.1016/j.puhe.2018.01.028] [PMID: 29518617]
[13]
Khamoushi, A.; Sartang, M.M.; Mazloom, Z.; Akbarzadeh, M. Dietary diversity and abdominal obesity among female students of shiraz university of medical sciences, Shiraz, Iran. Int. J. Nurs. Sci., 2020, 5(2), 79-83.
[14]
Qorbani, M.; Gorabi, M.A.; Khatibi, N.; Ejtahed, H.S.; Khazdouz, M.; Djalalinia, S.; Sahebkar, A.; Abdar, E.M.; Hasani, M. Dietary diversity score and cardio-metabolic risk factors: An updated systematic review and meta-analysis. Eat. Weight Disord., 2022, 27(1), 85-100.
[http://dx.doi.org/10.1007/s40519-020-01090-4] [PMID: 33772731]
[15]
Ganesan, K.; Xu, B. Anti-obesity effects of medicinal and edible mushrooms. Molecules, 2018, 23(11), 2880.
[http://dx.doi.org/10.3390/molecules23112880] [PMID: 30400600]
[16]
da Silva, L.; da Veiga, V.G.; Ramalho, R.A. Association of serum concentrations of retinol and carotenoids with overweight in children and adolescents. Nutrition, 2007, 23(5), 392-397.
[http://dx.doi.org/10.1016/j.nut.2007.02.009] [PMID: 17433621]
[17]
Molnár, D.; Decsi, T.; Koletzko, B. Reduced antioxidant status in obese children with multimetabolic syndrome. Int. J. Obes., 2004, 28(10), 1197-1202.
[http://dx.doi.org/10.1038/sj.ijo.0802719] [PMID: 15314634]
[18]
Puchau, B.; Zulet, M.Á.; de Echávarri, A.G.; Hermsdorff, H.H.M.; Martínez, J.A. Dietary total antioxidant capacity: A novel indicator of diet quality in healthy young adults. J. Am. Coll. Nutr., 2009, 28(6), 648-656.
[http://dx.doi.org/10.1080/07315724.2009.10719797] [PMID: 20516264]
[19]
Puchau, B.; Zulet, M.A.; de Echávarri, A.G.; Hermsdorff, H.H.M.; Martínez, J.A. Dietary total antioxidant capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition, 2010, 26(5), 534-541.
[http://dx.doi.org/10.1016/j.nut.2009.06.017] [PMID: 19783122]
[20]
Nascimento-Souza, M.A.; Paiva, P.G.; Martino, H.S.D.; Ribeiro, A.Q. Dietary total antioxidant capacity as a tool in health outcomes in middle-aged and older adults: A systematic review. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 905-912.
[http://dx.doi.org/10.1080/10408398.2016.1230089] [PMID: 27646047]
[21]
Pilch, W.; Wyrostek, J.; Piotrowska, A.; Ledwig, C.O.; Zuziak, R.; Krępa, S.E.; Maciejczyk, M.; Żychowska, M. Blood pro-oxidant/antioxidant balance in young men with class II obesity after 20 sessions of whole body cryostimulation: A preliminary study. Redox Rep., 2021, 26(1), 10-17.
[http://dx.doi.org/10.1080/13510002.2021.1881328] [PMID: 33560197]
[22]
Ghazizadeh, H.; Bohn, K.M.; Zirak, G.R.; Khodabandeh, K.A.; Feyzabadi, Z.R.; Karimian, S.M.; Timar, A.; Jaberi, N.; Bajgiran, M.M.; Sharifan, P.; Tayefi, M.; Silakhori, S.; Emamian, M.; Oladi, M.R.; Esmaily, H.; Ferns, G.A.; Adeli, K.; Mobarhan, G.M. Comprehensive laboratory reference intervals for routine biochemical markers and pro-oxidant-antioxidant balance (PAB) in male adults. J. Clin. Lab. Anal., 2020, 34(11), e23470.
[http://dx.doi.org/10.1002/jcla.23470] [PMID: 32986247]
[23]
Sinatora, R.V.; Chagas, E.F.B.; Mattera, F.O.P.; Mellem, L.J.; Santos, A.R.O.; Pereira, L.P.; Aranão, A.L.C.; Guiguer, E.L.; Araújo, A.C.; Haber, J.F.S.; Guissoni, L.C.; Barbalho, S.M. Relationship of inflammatory markers and metabolic syndrome in postmenopausal women. Metabolites, 2022, 12(1), 73.
[http://dx.doi.org/10.3390/metabo12010073] [PMID: 35050195]
[24]
Leanza, G.; Conte, C.; Cannata, F.; Isgrò, C.; Piccoli, A.; Strollo, R.; Quattrocchi, C.C.; Papalia, R.; Denaro, V.; Maccarrone, M.; Napoli, N.; Sardanelli, A.M. Oxidative stress in postmenopausal women with or without obesity. Cells, 2023, 12(8), 1137.
[http://dx.doi.org/10.3390/cells12081137] [PMID: 37190046]
[25]
Rathnayake, N.; Lenora, J.; Alwis, G.; Lekamwasam, S. Prevalence and severity of menopausal symptoms and the quality of life in middle-aged women: A study from Sri Lanka. Nurs. Res. Pract., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/2081507] [PMID: 31354992]
[26]
Azadbakht, L.; Mirmiran, P.; Esmaillzadeh, A.; Azizi, F. Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am. J. Clin. Nutr., 2005, 82(3), 523-530.
[http://dx.doi.org/10.1093/ajcn/82.3.523] [PMID: 16155263]
[27]
Ghaffarpour M, Rad HA, Kianfar H. The Manual for Household Measures, Cooking Yields Factors and Edible Portion of Foods. Tehran: Keshaverzi Press 1999.
[28]
Kant, A.K.; Schatzkin, A.; Ziegler, R.G. Dietary diversity and subsequent cause-specific mortality in the NHANES I epidemiologic follow-up study. J. Am. Coll. Nutr., 1995, 14(3), 233-238.
[http://dx.doi.org/10.1080/07315724.1995.10718501] [PMID: 8586771]
[29]
Kant, A.K.; Block, G.; Schatzkin, A.; Ziegler, R.G.; Nestle, M. Dietary diversity in the US population, NHANES II, 1976-1980. J. Am. Diet. Assoc., 1991, 91(12), 1526-1531.
[http://dx.doi.org/10.1016/S0002-8223(21)01428-0] [PMID: 1960344]
[30]
US Department of Agriculture. USDA’S Food Guide Pyramid Booklet; US Department of Agriculture: Washington, DC, 1996.
[31]
Halvorsen, B.L.; Carlsen, M.H.; Phillips, K.M.; Bøhn, S.K.; Holte, K.; Jacobs, D.R., Jr; Blomhoff, R. Content of redox-active compounds (i.e, antioxidants) in foods consumed in the United States. Am. J. Clin. Nutr., 2006, 84(1), 95-135.
[http://dx.doi.org/10.1093/ajcn/84.1.95] [PMID: 16825686]
[32]
Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; Oja, P. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc., 2003, 35(8), 1381-1395.
[http://dx.doi.org/10.1249/01.MSS.0000078924.61453.FB] [PMID: 12900694]
[33]
IPAQ research committee. Guidelines for data processing and analysis of the international physical activity questionnaire (IPAQ). 2006. Available from: http://file:///C:/Users/Shiza/Downloads/GuidelinesforDataProcessingandAnalysisoftheInternationalPhysicalActivityQuestionnaireIPAQShortandLongForms.pdf
[34]
Mahdavi, M.A.; Mahdavi, R.; Kolahi, S.; Attari, E.V. Cardiometabolic responses to L-carnitine in obese women with knee osteoarthritis: A randomized, double-blind, placebo-controlled pilot study. Prog. Nutr., 2017, 20(S1), 337-344.
[35]
Litchford MD. Clinical: Biochemical, physical, and functional assessment. In: Raymond JL, Morrow K, Eds. Krause and Mahan’sFood and the Nutrition Care Process. Elsevier 2023; pp. 57-80.
[36]
Friedwald, W.; Leve, R.; Fredrichson, D. Estimation of concentration of low density lipoproteins separated by three different methods. Clin. Chem., 1972, 18, 499-502.
[37]
Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and? -cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985, 28(7), 412-419.
[http://dx.doi.org/10.1007/BF00280883] [PMID: 3899825]
[38]
Alamdari, D.H.; Paletas, K.; Pegiou, T.; Sarigianni, M.; Befani, C.; Koliakos, G. A novel assay for the evaluation of the prooxidant–antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients. Clin. Biochem., 2007, 40(3-4), 248-254.
[http://dx.doi.org/10.1016/j.clinbiochem.2006.10.017] [PMID: 17196578]
[39]
Alamdari, D.; Ordoudi, S.A.; Nenadis, N.; Tsimidou, M.Z.; Koliakos, G.; Parizadeh, M.R. Comparison of prooxidant- antioxidant balance method with crocin method for determination of total prooxidant-antioxidant capacity. Iran. J. Basic Med. Sci., 2009, 12(2), 39.
[40]
Boskabadi, H.; Moeini, M.; Tara, F.; Tavallaie, S.; Saber, H.; Nejati, R.; Hosseini, G.; Toroghi, M.H.; Ferns, G.A.A.; Mobarhan, G.M. Determination of prooxidant–antioxidant balance during uncomplicated pregnancy using a rapid assay. J. Med. Biochem., 2013, 32(3), 227-232.
[http://dx.doi.org/10.2478/jomb-2013-0018]
[41]
Sarrafzadegan, N.; Azadbakht, L.; Mohammadifard, N.; Esmaillzadeh, A.; Safavi, M.; Sajadi, F.; Alikhasi, H.; Maghroun, M.; Kelishadi, R. Do lifestyle interventions affect dietary diversity score in the general population? Public Health Nutr., 2009, 12(10), 1924-1930.
[http://dx.doi.org/10.1017/S1368980009004856] [PMID: 19232153]
[42]
Ghomi, H.M; Mirmiran, P; Amiri, Z; Asghari, G; Sadeghian, S; Sarbazi, N The association of food security and dietary variety in subjects aged over 40 in District 13 of Tehran. IJEM, 2012, 14, 360e7.
[43]
Savy, M.; Martin-Prével, Y.; Danel, P.; Traissac, P.; Dabiré, H.; Delpeuch, F. Are dietary diversity scores related to the socio-economic and anthropometric status of women living in an urban area in Burkina Faso? Public Health Nutr., 2008, 11(2), 132-141.
[http://dx.doi.org/10.1017/S1368980007000043] [PMID: 17565760]
[44]
Ajani, S. An assessment of dietary diversity in six Nigerian States. Afr. J. Biomed. Res., 2010, 13, 161-167.
[45]
Paulo, H.A.; Mosha, D.; Mwanyika-Sando, M.; Mboya, I.B.; Madzorera, I.; Killewo, J.; Leyna, G.H.; Msuya, S.E.; Fawzi, W.W. Role of dietary quality and diversity on overweight and obesity among women of reproductive age in Tanzania. PLoS One, 2022, 17(4), e0266344.
[http://dx.doi.org/10.1371/journal.pone.0266344] [PMID: 35390059]
[46]
Khamis, A.G.; Ntwenya, J.E.; Senkoro, M.; Mfinanga, S.G.; Kreppel, K.; Mwanri, A.W.; Bonfoh, B.; Kwesigabo, G. Association between dietary diversity with overweight and obesity: A cross-sectional study conducted among pastoralists in monduli district in Tanzania. PLoS One, 2021, 16(1), e0244813.
[http://dx.doi.org/10.1371/journal.pone.0244813] [PMID: 33439869]
[47]
de Otto, O.M.C.; Padhye, N.S.; Bertoni, A.G.; Jacobs, D.R., Jr; Mozaffarian, D. Everything in moderation - dietary diversity and quality, central obesity and risk of diabetes. PLoS One, 2015, 10(10), e0141341.
[http://dx.doi.org/10.1371/journal.pone.0141341] [PMID: 26517708]
[48]
Abargouei, S.A.; Akbari, F.; Bellissimo, N.; Azadbakht, L. Dietary diversity score and obesity: A systematic review and meta-analysis of observational studies. Eur. J. Clin. Nutr., 2016, 70(1), 1-9.
[http://dx.doi.org/10.1038/ejcn.2015.118] [PMID: 26220567]
[49]
Mohajeri, M.; Hoojeghani, S.; Pourfarzi, F.; Ghahremanzadeh, M.; Barzegar, A. Association between dietary diversity and obesity in Ardebil adults: A case-control study. Nutr. Food Sci., 2019, 50(3), 555-567.
[http://dx.doi.org/10.1108/NFS-04-2019-0118]
[50]
Zhang, Q.; Chen, X.; Liu, Z.; Varma, D.S.; Wan, R.; Zhao, S. Diet diversity and nutritional status among adults in southwest China. PLoS One, 2017, 12(2), e0172406.
[http://dx.doi.org/10.1371/journal.pone.0172406] [PMID: 28231308]
[51]
Farhangi, M.A.; Jahangiry, L. Dietary diversity score is associated with cardiovascular risk factors and serum adiponectin concentrations in patients with metabolic syndrome. BMC Cardiovasc. Disord., 2018, 18(1), 68.
[http://dx.doi.org/10.1186/s12872-018-0807-3] [PMID: 29665770]
[52]
Azadbakht, L.; Esmaillzadeh, A. Dietary diversity score is related to obesity and abdominal adiposity among Iranian female youth. Public Health Nutr., 2011, 14(1), 62-69.
[http://dx.doi.org/10.1017/S1368980010000522] [PMID: 20353617]
[53]
Theron, O.W.H.; Egal, A.A. A cross-sectional baseline survey investigating the relationship between dietary diversity and cardiovascular risk factors in women from the Vaal Region, South Africa. J. Nurs. Educ. Pract., 2013, 4(1), 50.
[http://dx.doi.org/10.5430/jnep.v4n1p50]
[54]
Arefhosseini, S.R.; Heidari, N.; Nabie, R.; Jabbari, M.; Niri, I.Z.; Zeinalian, R.; Jafarabadi, A.M. The association between food diversity and serum antioxidant indices in cataract patients compared to healthy subjects. J. Res. Med. Sci., 2021, 26(1), 59.
[http://dx.doi.org/10.4103/jrms.JRMS_321_20] [PMID: 34729067]
[55]
Kim, K.; Vance, T.; Chun, O. Greater total antioxidant capacity from diet and supplements is associated with a less atherogenic blood profile in US adults. Nutrients, 2016, 8(1), 15.
[http://dx.doi.org/10.3390/nu8010015] [PMID: 26742057]
[56]
Georgoulis, M.; Fragopoulou, E.; Kontogianni, M.D.; Margariti, A.; Boulamatsi, O.; Detopoulou, P.; Tiniakos, D.; Zafiropoulou, R.; Papatheodoridis, G. Blood redox status is associated with the likelihood of nonalcoholic fatty liver disease irrespectively of diet’s total antioxidant capacity. Nutr. Res., 2015, 35(1), 41-48.
[http://dx.doi.org/10.1016/j.nutres.2014.11.004] [PMID: 25530013]
[57]
Rautiainen, S.; Lindblad, B.E.; Morgenstern, R.; Wolk, A. Total antioxidant capacity of the diet and risk of age-related cataract: A population-based prospective cohort of women. JAMA Ophthalmol., 2014, 132(3), 247-252.
[http://dx.doi.org/10.1001/jamaophthalmol.2013.6241] [PMID: 24370844]
[58]
Farhangi, M.A.; Vajdi, M.; Fathollahi, P. Dietary total antioxidant capacity (TAC), general and central obesity indices and serum lipids among adults: An updated systematic review and meta-analysis. Int. J. Vitam. Nutr. Res., 2022, 92(5-6), 406-422.
[PMID: 32777987]
[59]
Hermsdorff, H.H.M.; Puchau, B.; Volp, A.C.P.; Barbosa, K.B.F.; Bressan, J.; Zulet, M.Á.; Martínez, J.A. Dietary total antioxidant capacity is inversely related to central adiposity as well as to metabolic and oxidative stress markers in healthy young adults. Nutr. Metab., 2011, 8(1), 59.
[http://dx.doi.org/10.1186/1743-7075-8-59] [PMID: 21859453]
[60]
Bahadoran, Z.; Golzarand, M.; Mirmiran, P.; Shiva, N.; Azizi, F. Dietary total antioxidant capacity and the occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran lipid and glucose study. Nutr. Metab., 2012, 9(1), 70.
[http://dx.doi.org/10.1186/1743-7075-9-70] [PMID: 22849424]
[61]
Mozaffari, H.; Daneshzad, E.; Surkan, P.J.; Azadbakht, L. Dietary total antioxidant capacity and cardiovascular disease risk factors: A systematic review of observational studies. J. Am. Coll. Nutr., 2018, 37(6), 533-545.
[http://dx.doi.org/10.1080/07315724.2018.1441079] [PMID: 29714643]
[62]
Fukuchi, Y.; Hiramitsu, M.; Okada, M.; Hayashi, S.; Nabeno, Y.; Osawa, T.; Naito, M. Lemon polyphenols suppress diet-induced obesity by up-regulation of mRNA levels of the enzymes involved in β-oxidation in mouse white adipose tissue. J. Clin. Biochem. Nutr., 2008, 43(3), 201-209.
[http://dx.doi.org/10.3164/jcbn.2008066] [PMID: 19015756]
[63]
Lee, M.S.; Kim, C.T.; Kim, Y. Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann. Nutr. Metab., 2009, 54(2), 151-157.
[http://dx.doi.org/10.1159/000214834] [PMID: 19390166]
[64]
Zulet, M.Á.; Puchau, B.; Hermsdorff, H.H.M.; Navarro, C.; Martínez, J.A. Vitamin A intake is inversely related with adiposity in healthy young adults. J. Nutr. Sci. Vitaminol., 2008, 54(5), 347-352.
[http://dx.doi.org/10.3177/jnsv.54.347] [PMID: 19001764]
[65]
Detopoulou, P.; Panagiotakos, D.B.; Chrysohoou, C.; Fragopoulou, E.; Nomikos, T.; Antonopoulou, S.; Pitsavos, C.; Stefanadis, C. Dietary antioxidant capacity and concentration of adiponectin in apparently healthy adults: the ATTICA study. Eur. J. Clin. Nutr., 2010, 64(2), 161-168.
[http://dx.doi.org/10.1038/ejcn.2009.130] [PMID: 19904292]
[66]
Psaltopoulou, T.; Panagiotakos, D.B.; Pitsavos, C.; Chrysochoou, C.; Detopoulou, P.; Skoumas, J.; Stefanadis, C. Dietary antioxidant capacity is inversely associated with diabetes biomarkers: The ATTICA study. Nutr. Metab. Cardiovasc. Dis., 2011, 21(8), 561-567.
[http://dx.doi.org/10.1016/j.numecd.2009.11.005] [PMID: 20171855]
[67]
Valtueña, S.; Pellegrini, N.; Franzini, L.; Bianchi, M.A.; Ardigò, D.; Del Rio, D.; Piatti, P.; Scazzina, F.; Zavaroni, I.; Brighenti, F. Food selection based on total antioxidant capacity can modify antioxidant intake, systemic inflammation, and liver function without altering markers of oxidative stress. Am. J. Clin. Nutr., 2008, 87(5), 1290-1297.
[http://dx.doi.org/10.1093/ajcn/87.5.1290] [PMID: 18469252]
[68]
Okubo, H.; Syddall, H.E.; Phillips, D.I.W.; Sayer, A.A.; Dennison, E.M.; Cooper, C.; Robinson, S.M. Dietary total antioxidant capacity is related to glucose tolerance in older people: The hertfordshire cohort study. Nutr. Metab. Cardiovasc. Dis., 2014, 24(3), 301-308.
[http://dx.doi.org/10.1016/j.numecd.2013.08.001] [PMID: 24370447]
[69]
Meydani, M.; Hasan, S.T. Dietary polyphenols and obesity. Nutrients, 2010, 2(7), 737-751.
[http://dx.doi.org/10.3390/nu2070737] [PMID: 22254051]
[70]
Calixto, S.F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J Agric Food Chem., 2011, 59(1), 43-49.