Tarumã-do-Cerrado (Vitex cymosa Bertero ex Spreng) for Food Diversity and Nutraceutical Products

Article ID: e241123223795

  • * (Excluding Mailing and Handling)

Abstract

Background: Tarumã-do-Cerrado (Vitex cymosa Bertero ex Spreng, TC) is a littleexplored Brazilian native fruit.

Objective: The sustainable bioprospecting of new fruits is essential to devise strategies for preventing and treating noncommunicable diseases, like obesity, and even contribute to food diversity and discovering functional ingredients.

Methods: This study evaluated the proximate composition, minerals, dietary fiber, and their fractions, phenolic compounds by two types of extraction, and antioxidant activity in the TC edible part. We also determined its fatty acid profile from the seed’s crude oil.

Results: TC has 100 g low-fat content (0.19 g) containing good phosphorus (91.50 mg) source and is rich in chromium (0.05 mg) and molybdenum (0.53 mg). It has a high range of dietary fiber in fresh and freeze-dried fruit (4.01 g and 26.23 g, respectively). The different extraction conditions showed medium to high content (101.58 to 598.80 µg GAE/100 g) of phenolic compounds. Antioxidant activity has been demonstrated in vitro using electron or hydrogen/proton transfer mechanisms. The crude oilseed is a source of oleic (35.91%) and linoleic acid (32.20%).

Conclusion: TC provides essential nutrients, fibers, and bioactive compounds to be allied to sustainable health strategies for food diversity and nutraceutical product development.

[1]
Sharma S, Chung H, Kim H, Hong S. Paradoxical effects of fruit on obesity. Nutrients 2016; 8(10): 633.
[http://dx.doi.org/10.3390/nu8100633] [PMID: 27754404]
[2]
Jasmine C, Akash J, Bhatia M. Fruits in weight loss: A natural approach to combat obesity. Bulletin of Environment. Pharmacology and Life Sciences 2021; 10(12): 276-84.
[3]
Guerra A, Reis LK, Borges FLG, et al. Ecological restoration in Brazilian biomes: Identifying advances and gaps. For Ecol Manage 2020; 458: 117802.
[http://dx.doi.org/10.1016/j.foreco.2019.117802]
[4]
de Lima FF, Lescano CH, de Oliveira IP. Fruits of the Brazilian Cerrado. Cham: Springer International Publishing 2021.
[5]
Fonseca E, Figer A, Furtado D, Lopes D, Alviano D, Alviano C. Chemical analysis and antimicrobial activity of the essential oil from Vitex cymosa fruits. Bertero. Rev Bras Pl Med 2006; pp. 87-91.
[6]
Leitão SG, Santos TC, Delle Monache F, Matheus ME, Fernandes PD, Marinho BG. Phytochemical profile and analgesic evaluation of Vitex cymosa leaf extracts. Rev Bras Farmacogn 2011; 21(5): 874-83.
[http://dx.doi.org/10.1590/S0102-695X2011005000160]
[7]
Silva JI de M. Nunez CV. Estudo fitoquímico de Vitex cymosa Bertero ex Spreng. (Lamiaceae). IV Congresso de Iniciação Científica do INPA. 389-93.
[8]
Ballard CR, dos Santos EF, Dubois MJ, et al. Two polyphenol-rich Brazilian fruit extracts protect from diet-induced obesity and hepatic steatosis in mice. Food Funct 2020; 11(10): 8800-10.
[http://dx.doi.org/10.1039/D0FO01912G] [PMID: 32959866]
[9]
Behl T, Bungau S, Kumar K, et al. Pleotropic effects of polyphenols in cardiovascular system. Biomed Pharmacother 2020; 130: 110714.
[http://dx.doi.org/10.1016/j.biopha.2020.110714] [PMID: 34321158]
[10]
Sun C, Zhao C, Guven EC, et al. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Front 2020; 1(1): 18-44.
[http://dx.doi.org/10.1002/fft2.15]
[11]
Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Front Pharmacol 2021; 12: 710304.
[http://dx.doi.org/10.3389/fphar.2021.710304] [PMID: 34744708]
[12]
Singh M, Thrimawithana T, Shukla R, Adhikari B. Managing obesity through natural polyphenols: A review. Future Foods 2020; 1-2: 100002.
[http://dx.doi.org/10.1016/j.fufo.2020.100002]
[13]
Mendonça RD, Carvalho NC, Martin-Moreno JM, et al. Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: The SUN cohort study. Nutr Metab Cardiovasc Dis 2019; 29(1): 69-78.
[http://dx.doi.org/10.1016/j.numecd.2018.09.012] [PMID: 30459074]
[14]
Marranzano M, Rosa RL, Malaguarnera M, Palmeri R, Tessitori M, Barbera AC. Polyphenols: Plant sources and food industry applications. Curr Pharm Des 2019; 24(35): 4125-30.
[http://dx.doi.org/10.2174/1381612824666181106091303] [PMID: 30398104]
[15]
AOAC. Official Methods of Analysis of AOAC International. Horwitz W, Ed. 2000.
[16]
IOM. dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington, DC: The National Academies Press 2005; pp. 1-1331.
[http://dx.doi.org/10.17226/10490]
[17]
do Espirito Santo BLS, da Silva ÉC, Jordão Cândido C, et al. Dietary fiber chemical structures and physicochemical properties of edible Pouteria glomerata fruits, native from Brazilian Pantanal. Food Res Int 2020; 137(July): 109576.
[http://dx.doi.org/10.1016/j.foodres.2020.109576] [PMID: 33233188]
[18]
IOM. Dietary reference intakes. Nutr Rev 1997; 55(9): 319-26.
[http://dx.doi.org/10.1111/j.1753-4887.1997.tb01621.x] [PMID: 9329268]
[19]
AOCS. Official methods and recommended practices of the American Oil Chemists’ Society. Champaign 2009.
[20]
Hartman L, Lago RC. Rapid preparation of fatty acid methyl esters from lipids. Lab Pract 1973; 22(6): 475-476, passim.
[PMID: 4727126]
[21]
Stahl MA, Buscato MHM, Grimaldi R, Cardoso LP, Ribeiro APB. Low sat-structured fats enriched in α-linolenic acid: physicochemical properties and crystallization characteristics. J Food Sci Technol 2017; 54(11): 3391-403.
[http://dx.doi.org/10.1007/s13197-017-2780-8] [PMID: 29051634]
[22]
Viganó J, Brumer IZ, Braga PAC, et al. Pressurized liquids extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds. Food Bioprod Process 2016; 100: 382-90.
[http://dx.doi.org/10.1016/j.fbp.2016.08.011]
[23]
Anhê FF, Varin TV, Le Barz M, et al. Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr Obes Rep 2015; 4(4): 389-400.
[http://dx.doi.org/10.1007/s13679-015-0172-9] [PMID: 26343880]
[24]
Ou B, Chang T, Huang D, Prior RL. Determination of total antioxidant capacity by oxygen radical absorbance capacity (ORAC) using fluorescein as the fluorescence probe: First Action 2012.23. J AOAC Int 2013; 96(6): 1372-6.
[http://dx.doi.org/10.5740/jaoacint.13-175] [PMID: 24645517]
[25]
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 1996; 239(1): 70-6.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[26]
World Health Organization. Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. World Health Organization 2003.
[27]
Herforth A, Arimond M, Álvarez-Sánchez C, Coates J, Christianson K, Muehlhoff E. A global review of food-based dietary guidelines. Adv Nutr 2019; 10(4): 590-605.
[http://dx.doi.org/10.1093/advances/nmy130] [PMID: 31041447]
[28]
FAO, IFAD, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2020. 2020.
[29]
Wallace TC, Bailey RL, Blumberg JB, Burton-Freeman B. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. 2019; 60(13): 2174-1.
[30]
Caldeira SD, Hiane PA, Ramos MIL, Ramos Filho MM. Physicochemical characterization of araçá (Psidium guineense SW.) and Tarumã (Vitex cymosa Bert.) from the State of Mato Grosso do Sul. Bol Cent Pesqui Process Aliment 2004; 22(1): 145-54.
[http://dx.doi.org/10.5380/cep.v22i1.1186]
[31]
Karanja C, Imathiu S, Nelson KOO, Thari W. Determination of nutritional composition and selected phytochemical and anti-nutrient content of Vitex payos (Chocolate Berry), a neglected and underutilized fruit from two Kenyan Counties. Journal of Food Security 2022; 10(2): 44-52.
[http://dx.doi.org/10.12691/jfs-10-2-1]
[32]
Adejumo AA, Abi RO. Nutritional and anti-nutritional composition of black-plum (Vitex doniana). J Nat Sci 2013; 3(12) Available from: www.iiste.org
[33]
Lufu R, Ambaw A, Opara UL. Water loss of fresh fruit: Influencing pre-harvest, harvest and postharvest factors. Sci Hortic (Amsterdam) 2020; 272: 109519.
[http://dx.doi.org/10.1016/j.scienta.2020.109519]
[34]
NEPA-UNICAMP. Tabela Brasileira de Composicao de Alimentos (TACO). Campinas: NEPA-UNICAMP 2011.
[35]
USDA. Agricultural research service food data central. 2019. Available from https://fdc.nal.usda.gov/
[36]
FDA. Specific Requirements for Nutrient Content Claims. 2022. Available from https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-101/subpart-D
[37]
Price CT, Koval KJ, Langford JR. Silicon: a review of its potential role in the prevention and treatment of postmenopausal osteoporosis. Int J Endocrinol 2013; 2013: 1-6.
[http://dx.doi.org/10.1155/2013/316783] [PMID: 23762049]
[38]
Danzeisen R, Williams DL, Viegas V, Dourson M, Verberckmoes S, Burzlaff A. Bioelution, bioavailability, and toxicity of cobalt compounds correlate. Toxicol Sci 2020; 174(2): 311-25.
[http://dx.doi.org/10.1093/toxsci/kfz249] [PMID: 32058562]
[39]
Sharma A. Low nickel diet in dermatology. Indian J Dermatol 2013; 58(3): 240.
[http://dx.doi.org/10.4103/0019-5154.110846] [PMID: 23723488]
[40]
Løvik M, Frøyland L, Haugen M, et al. Assessment of dietary intake of chromium (III) in relation to tolerable upper intake level. Eur J Nutr Food Saf 2018; 8(4): 195-7.
[http://dx.doi.org/10.9734/EJNFS/2018/42532]
[41]
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019; 15(5): 288-98.
[http://dx.doi.org/10.1038/s41574-019-0176-8] [PMID: 30814686]
[42]
Jiang S, Ma X, Li M, et al. Association between dietary mineral nutrient intake, body mass index, and waist circumference in U.S. adults using quantile regression analysis NHANES 2007-2014. PeerJ 2020; 8(3): e9127.
[http://dx.doi.org/10.7717/peerj.9127] [PMID: 32411541]
[43]
Sagor MAT, Smita RM, Shuvo APR, et al. The role of mineral deficiencies in insulin resistance and obesity. Curr Diabetes Rev 2022; 18(7): e171121197987.
[http://dx.doi.org/10.2174/1573399818666211117104626] [PMID: 34789132]
[44]
Guyenet SJ. Impact of whole, fresh fruit consumption on energy intake and adiposity: a systematic review. Front Nutr 2019; 6: 66.
[http://dx.doi.org/10.3389/fnut.2019.00066] [PMID: 31139631]
[45]
Ciudad-Mulero M, Fernández-Ruiz V, Matallana-González MC, Morales P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Adv Food Nutr Res 2019; 90: 83-134.
[46]
THE BRAZILIAN CITY OF CARDIOLOGY. Faludi A, Izar M, Saraiva J, et al. Update of the Brazilian guideline on dyslipidemia and prevention of atherosclerosis Brazilian Cardiology Archives 2017; 109: 1-77. Available from: http://www.gnresearch.org/doi/10.5935/abc.20170121
[47]
Garcia-Amezquita LE, Tejada-Ortigoza V, Serna-Saldivar SO, Welti-Chanes J. Dietary fiber concentrates from fruit and vegetable by-products: processing, modification, and application as functional ingredients. Food Bioprocess Technol 2018; 11(8): 1439-63.
[http://dx.doi.org/10.1007/s11947-018-2117-2]
[48]
Rocchetti G, Gregorio RP, Lorenzo JM, et al. Functional implications of bound phenolic compounds and phenolics-food interaction: A review. Compr Rev Food Sci Food Saf 2022; 21(2): 811-42.
[http://dx.doi.org/10.1111/1541-4337.12921] [PMID: 35150191]
[49]
Quirós-Sauceda AE, Palafox-Carlos H, Sáyago-Ayerdi SG, et al. Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food Funct 2014; 5(6): 1063-72.
[http://dx.doi.org/10.1039/C4FO00073K] [PMID: 24740575]
[50]
Du C, Abdullah JJ, Greetham D, et al. Valorization of food waste into biofertiliser and its field application. J Clean Prod 2018; 187: 273-84.
[http://dx.doi.org/10.1016/j.jclepro.2018.03.211]
[51]
Kikalishvili B, Zurabashvili D, Sulakvelidze Ts, Malania M, Turabelidze D. Study of lipids seed’s oil of Vitex agnus castus growing in Georgia. Georgian Med News 2016; (256-257): 77-81.
[PMID: 27661281]
[52]
Ali A, Gharby S, Asdadi A, Idrissi Hassani L, Chebli B, Moutaj R. Chemical composition and antifungal activity of Vitex agnus-castus l. seeds oil growing in Morocco. J Mater Environ Sci 2014; 5(3): 823-30.
[53]
Gonçalves R, Ayres VFS, Carvalho C, et al. Chemical composition and antibacterial activity of the essential oil of Vitex agnus-castus L. (Lamiaceae). An Acad Bras Cienc 2017; 89(4): 2825-32.
[http://dx.doi.org/10.1590/0001-3765201720170428] [PMID: 29267797]
[54]
Simões T, Ferreira J, Lemos MFL, et al. Argan oil as a rich source of linoleic fatty acid for dietetic structured lipids production. Life (Basel) 2021; 11(11): 1114.
[http://dx.doi.org/10.3390/life11111114] [PMID: 34832990]
[55]
Tutunchi H, Ostadrahimi A, Saghafi-Asl M. The effects of diets enriched in monounsaturated oleic acid on the management and prevention of obesity: a systematic review of human intervention studies. Adv Nutr 2020; 11(4): 864-77.
[http://dx.doi.org/10.1093/advances/nmaa013] [PMID: 32135008]
[56]
Matlock MG. Introduction: The need for high-oleic oilsHigh Oleic Oils. Elsevier 2022; pp. 1-6.
[http://dx.doi.org/10.1016/B978-0-12-822912-5.00006-X]
[57]
Delgado GE, März W, Lorkowski S, von Schacky C, Kleber ME. Omega-6 fatty acids: Opposing associations with risk—The Ludwigshafen Risk and Cardiovascular Health Study. J Clin Lipidol 2017; 11(4): 1082-1090.e14.
[http://dx.doi.org/10.1016/j.jacl.2017.05.003] [PMID: 28647413]
[58]
Martínez-Galán JP, Ontibón-Echeverri CM, Campos Costa M, et al. Enzymatic synthesis of capric acid-rich structured lipids and their effects on mice with high-fat diet-induced obesity. Food Res Int 2021; 148: 110602.
[http://dx.doi.org/10.1016/j.foodres.2021.110602] [PMID: 34507747]
[59]
Moreira DKT, Ract JNR, Ribeiro APB, Macedo GA. Production and characterization of structured lipids with antiobesity potential and as a source of essential fatty acids. Food Res Int 2017; 99(Pt 1): 713-9.
[http://dx.doi.org/10.1016/j.foodres.2017.06.034] [PMID: 28784535]
[60]
Quideau S, Deffieux D, Douat-Casassus C, Pouységu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 2011; 50(3): 586-621.
[http://dx.doi.org/10.1002/anie.201000044] [PMID: 21226137]
[61]
Galanakis CM, Tsatalas P, Charalambous Z, Galanakis IM. Control of microbial growth in bakery products fortified with polyphenols recovered from olive mill wastewater. Environmental Technology & Innovation 2018; 10: 1-15.
[http://dx.doi.org/10.1016/j.eti.2018.01.006]
[62]
Basanta MF, Rojas AM, Martinefski MR, Tripodi VP, De’Nobili MD, Fissore EN. Cherry (Prunus avium) phenolic compounds for antioxidant preservation at food interfaces. J Food Eng 2018; 239: 15-25.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.06.028]
[63]
Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: A review. Current Research in Food Science 2021; 4: 200-14.
[http://dx.doi.org/10.1016/j.crfs.2021.03.011] [PMID: 33899007]
[64]
Daniel DL, Huerta BEB, Sosa IA, Mendoza MGV. Effect of fixed bed drying on the retention of phenolic compounds, anthocyanins and antioxidant activity of roselle (Hibiscus sabdariffa L.). Ind Crops Prod 2012; 40: 268-76.
[http://dx.doi.org/10.1016/j.indcrop.2012.03.015]
[65]
Lang GH, Lindemann IS, Ferreira CD, Hoffmann JF, Vanier NL, de Oliveira M. Effects of drying temperature and long-term storage conditions on black rice phenolic compounds. Food Chem 2019; 287: 197-204.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.028] [PMID: 30857689]
[66]
Al Juhaimi F, Özcan MM, Uslu N, Ghafoor K. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils. J Food Sci Technol 2018; 55(1): 190-7.
[http://dx.doi.org/10.1007/s13197-017-2895-y] [PMID: 29358810]
[67]
Antony A, Farid M. Effect of temperatures on polyphenols during extraction. Appl Sci (Basel) 2022; 12(4): 2107.
[http://dx.doi.org/10.3390/app12042107]
[68]
Osorio-Tobón JF. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J Food Sci Technol 2020; 57(12): 4299-315.
[http://dx.doi.org/10.1007/s13197-020-04433-2] [PMID: 33087945]
[69]
Jensen JS, Blachez B, Egebo M, Meyer AS. Rapid extraction of polyphenols from red grapes. Am J Enol Vitic 2007; 58(4): 451-61.
[http://dx.doi.org/10.5344/ajev.2007.58.4.451]
[70]
Ismail BB, Guo M, Pu Y, Wang W, Ye X, Liu D. Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrason Sonochem 2019; 52: 257-67.
[http://dx.doi.org/10.1016/j.ultsonch.2018.11.023] [PMID: 30514599]
[71]
Sharifi-Rad M, Anil Kumar NV, Zucca P, et al. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol 2020; 11: 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[72]
Tun S, Spainhower CJ, Cottrill CL, et al. Therapeutic efficacy of antioxidants in ameliorating obesity phenotype and associated comorbidities. Front Pharmacol 2020; 11: 1234.
[http://dx.doi.org/10.3389/fphar.2020.01234] [PMID: 32903449]
[73]
Che Sulaiman IS, Basri M, Fard Masoumi HR, Chee WJ, Ashari SE, Ismail M. Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chem Cent J 2017; 11(1): 54.
[http://dx.doi.org/10.1186/s13065-017-0285-1] [PMID: 29086900]
[74]
Yim HS, Chye FY, Rao V, et al. Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology. J Food Sci Technol 2013; 50(2): 275-83.
[http://dx.doi.org/10.1007/s13197-011-0349-5] [PMID: 24425917]
[75]
de Souza VR, Pereira PAP, Queiroz F, Borges SV, de Deus Souza Carneiro J. Determination of bioactive compounds, antioxidant activity and chemical composition of Cerrado Brazilian fruits. Food Chem 2012; 134(1): 381-6.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.191]
[76]
Siqueira EM de A, Rosa FR, Fustinoni AM, de Sant’Ana LP, Arruda SF. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple. PLoS ONE 2013; 8(8): e72826.
[77]
Everette JD, Bryant QM, Green AM, Abbey YA, Wangila GW, Walker RB. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. J Agric Food Chem 2010; 58(14): 8139-44.
[http://dx.doi.org/10.1021/jf1005935] [PMID: 20583841]
[78]
Platzer M, Kiese S, Herfellner T, Schweiggert-Weisz U, Eisner P. How does the phenol structure influence the results of the folin-ciocalteu assay? Antioxidants 2021; 10(5): 811.
[http://dx.doi.org/10.3390/antiox10050811] [PMID: 34065207]