Food Contamination with Micro-plastics: Occurrences, Bioavailability, Human Vulnerability, and Prevention

Page: [797 - 810] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Microplastics (MPs) are emergent environmental contaminants that are designated as either primary or secondary dependent on their origins. Formulation, morphology, dimensions, and colour scheme, along with other features, are connected with their propensity to reach the food webs and their dangers. Whilst ecological adversities of MPs have drawn considerable interest, the hazards to individuals from dietary exposure have yet to be determined. The aim of this review is to gauge existing understanding concerning MPs in foodstuffs and to explore the problems and inadequacies for threat assessment. The prevalence of MPs in foodstuffs and sugary drinks has been detected all over the world, but most researchers judged the existing information to be not only inadequate but also of dubious value, owing to the notable lack of agreement on a regulated quantification methods and a consistent appellation. Most published papers have highlighted potable water and condiments such as sugars, salts, and nectar as significant food components of MPs for humans. The threat assessment reveals significant discrepancies in our understanding of MP toxicity for human consumption, which hinders the estimate of risk-based regulations regarding food safety. The lack of comparators for evaluating MPs food consumption prohibits dietary MPs risk description and risk mitigation. Researchers and Food Safety Administrators confer various obstacles along with possibilities linked to the appearance of MPs in foodstuffs. Further investigation on the MPs categorization and exposures is essential considering that any subsequent threat evaluation record can contain a comprehensive dietary viewpoint.

Graphical Abstract

[1]
Jambeck JR, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean. Science 2015; 347(6223): 768-71.
[http://dx.doi.org/10.1126/science.1260352] [PMID: 25678662]
[2]
Alexy P, Anklam E, Emans T, et al. Managing the analytical challenges related to micro- and nanoplastics in the environment and food: Filling the knowledge gaps. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37(1): 1-10.
[http://dx.doi.org/10.1080/19440049.2019.1673905] [PMID: 31596687]
[3]
Patrício Silva AL, Prata JC, Walker TR, et al. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chem Eng J 2021; 405: 126683.
[http://dx.doi.org/10.1016/j.cej.2020.126683] [PMID: 32834764]
[4]
Guerranti C, Martellini T, Perra G, Scopetani C, Cincinelli A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ Toxicol Pharmacol 2019; 68: 75-9.
[http://dx.doi.org/10.1016/j.etap.2019.03.007] [PMID: 30877953]
[5]
Fotopoulou KN, Karapanagioti HK. Degradation of various plastics in the environment. Hazardous Chemicals Associated with Plastics in the Marine Environment. Cham: Springer 2017; 78.
[http://dx.doi.org/10.1007/698_2017_11]
[6]
Holmes R, Ma J, Andra SS, Wang HS. Effect of common consumer washing methods on bisphenol A release in tritan drinking bottles. Chemosphere 2021; 277: 130355.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130355] [PMID: 34381285]
[7]
da Costa JP, Santos PSM, Duarte AC, Rocha-Santos T. (Nano)plastics in the environment - Sources, fates and effects. Sci Total Environ 2016; 566-567: 15-26.
[http://dx.doi.org/10.1016/j.scitotenv.2016.05.041] [PMID: 27213666]
[8]
Napper IE, Thompson RC. Plastic debris in the marine environment: History and future challenges. Glob Chall 2020; 4(6): 1900081.
[http://dx.doi.org/10.1002/gch2.201900081] [PMID: 32685195]
[9]
Wu P, Tang Y, Jin H, Song Y, Liu Y, Cai Z. Consequential fate of bisphenol-attached PVC microplastics in water and simulated intestinal fluids. Environ Sci Ecotechnol 2020; 2: 100027.
[http://dx.doi.org/10.1016/j.ese.2020.100027] [PMID: 36160922]
[10]
Wu P, Cai Z, Jin H, Tang Y. Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Sci Total Environ 2019; 650(Pt 1): 671-8.
[http://dx.doi.org/10.1016/j.scitotenv.2018.09.049] [PMID: 30212696]
[11]
Barboza LGA, Gimenez BCG. Microplastics in the marine environment: Current trends and future perspectives. Mar Pollut Bull 2015; 97(1-2): 5-12.
[http://dx.doi.org/10.1016/j.marpolbul.2015.06.008] [PMID: 26072046]
[12]
Bergmann M, Gutow L, Klages M, Eds. Marine anthropogenic litter. Cham: Springer 2015.
[http://dx.doi.org/10.1007/978-3-319-16510-3]
[13]
Guo JJ, Huang XP, Xiang L, et al. Source, migration and toxicology of microplastics in soil. Environ Int 2020; 137: 105263.
[http://dx.doi.org/10.1016/j.envint.2019.105263] [PMID: 32087481]
[14]
Barboza LGA, Dick Vethaak A, Lavorante BRBO, Lundebye AK, Guilhermino L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar Pollut Bull 2018; 133: 336-48.
[http://dx.doi.org/10.1016/j.marpolbul.2018.05.047] [PMID: 30041323]
[15]
Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 2020; 17(4): 1212.
[http://dx.doi.org/10.3390/ijerph17041212] [PMID: 32069998]
[16]
Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE. Human consumption of microplastics. Environ Sci Technol 2019; 53(12): 7068-74.
[http://dx.doi.org/10.1021/acs.est.9b01517] [PMID: 31184127]
[17]
Hantoro I, Löhr AJ, Van Belleghem FGAJ, Widianarko B, Ragas AMJ. Microplastics in coastal areas and seafood: Implications for food safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36(5): 674-711.
[http://dx.doi.org/10.1080/19440049.2019.1585581] [PMID: 30973067]
[18]
Rubio-Armendáriz C, Alejandro-Vega S, Paz-Montelongo S, Gutiérrez-Fernández ÁJ, Carrascosa-Iruzubieta CJ, Hardisson-de la Torre A. Microplastics as emerging food contaminants: A challenge for food safety. Int J Environ Res Public Health 2022; 19(3): 1174.
[http://dx.doi.org/10.3390/ijerph19031174] [PMID: 35162198]
[19]
Crawford CB, Quinn B. Microplastics, standardisation and spatial distribution. Microplastic Pollutants. Elsevier 2017; pp. 101-30.
[http://dx.doi.org/10.1016/B978-0-12-809406-8.00005-0]
[20]
Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ Sci Technol 2012; 46(6): 3060-75.
[http://dx.doi.org/10.1021/es2031505] [PMID: 22321064]
[21]
Shim WJ, Hong SH, Eo S. Marine microplastics: Abundance, distribution, and composition. Microplastic Contamination in Aquatic Environments. Elsevier 2018; pp. 1-26.
[http://dx.doi.org/10.1016/B978-0-12-813747-5.00001-1]
[22]
Frias JPGL, Nash R. Microplastics: Finding a consensus on the definition. Mar Pollut Bull 2019; 138: 145-7.
[http://dx.doi.org/10.1016/j.marpolbul.2018.11.022] [PMID: 30660255]
[23]
Frias J. Standardised protocol for monitoring microplastics in sediments. Deliverable 2018; 4: 2.
[24]
Rocha-Santos T. Characterization and analysis of microplastics. (1st ed.). United States of America: Elsevier 2017; 75.
[25]
Dehghani S, Moore F, Akhbarizadeh R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ Sci Pollut Res Int 2017; 24(25): 20360-71.
[http://dx.doi.org/10.1007/s11356-017-9674-1] [PMID: 28707239]
[26]
Wright SL, Kelly FJ. Plastic and human health: A micro issue? Environ Sci Technol 2017; 51(12): 6634-47.
[http://dx.doi.org/10.1021/acs.est.7b00423] [PMID: 28531345]
[27]
Kedzierski M, Lechat B, Sire O, Le Maguer G, Le Tilly V, Bruzaud S. Microplastic contamination of packaged meat: Occurrence and associated risks. Food Packag Shelf Life 2020; 24: 100489.
[http://dx.doi.org/10.1016/j.fpsl.2020.100489]
[28]
Sobhani Z, Lei Y, Tang Y, et al. Microplastics generated when opening plastic packaging. Sci Rep 2020; 10(1): 4841.
[http://dx.doi.org/10.1038/s41598-020-61146-4] [PMID: 32193409]
[29]
Oliveri Conti G, Ferrante M, Banni M, et al. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ Res 2020; 187: 109677.
[http://dx.doi.org/10.1016/j.envres.2020.109677] [PMID: 32454310]
[30]
Rainieri S, Barranco A. Microplastics, a food safety issue? Trends Food Sci Technol 2019; 84: 55-7.
[http://dx.doi.org/10.1016/j.tifs.2018.12.009]
[31]
Hernandez LM, Xu EG, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ Sci Technol 2019; 53(21): 12300-10.
[http://dx.doi.org/10.1021/acs.est.9b02540] [PMID: 31552738]
[32]
Kosuth M, Mason SA, Wattenberg EV. Anthropogenic contamination of tap water, beer, and sea salt. PLoS One 2018; 13(4): e0194970.
[http://dx.doi.org/10.1371/journal.pone.0194970] [PMID: 29641556]
[33]
Mason SA, Welch VG, Neratko J. Synthetic polymer contamination in bottled water. Front Chem 2018; 6: 407.
[http://dx.doi.org/10.3389/fchem.2018.00407] [PMID: 30255015]
[34]
Pivokonsky M, Cermakova L, Novotna K, Peer P, Cajthaml T, Janda V. Occurrence of microplastics in raw and treated drinking water. Sci Total Environ 2018; 643: 1644-51.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.102] [PMID: 30104017]
[35]
Mintenig SM, Löder MGJ, Primpke S, Gerdts G. Low numbers of microplastics detected in drinking water from ground water sources. Sci Total Environ 2019; 648: 631-5.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.178] [PMID: 30121540]
[36]
Obmann BE, Sarau G, Holtmannspötter H, Pischetsrieder M, Christiansen SH, Dicke W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res 2018; 141: 307-16.
[http://dx.doi.org/10.1016/j.watres.2018.05.027] [PMID: 29803096]
[37]
Schymanski D, Goldbeck C, Humpf HU, Fürst P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res 2018; 129: 154-62.
[http://dx.doi.org/10.1016/j.watres.2017.11.011] [PMID: 29145085]
[38]
Ranjan VP, Joseph A, Goel S. Microplastics and other harmful substances released from disposable paper cups into hot water. J Hazard Mater 2021; 404(Pt B): 124118.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124118] [PMID: 33091697]
[39]
Shruti VC, Pérez-Guevara F, Elizalde-Martínez I, Kutralam-Muniasamy G. First study of its kind on the microplastic contamination of soft drinks, cold tea and energy drinks - Future research and environmental considerations. Sci Total Environ 2020; 726: 138580.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138580] [PMID: 32315857]
[40]
Kutralam-Muniasamy G, Pérez-Guevara F, Elizalde-Martínez I, Shruti VC. Branded milks - Are they immune from microplastics contamination? Sci Total Environ 2020; 714: 136823.
[http://dx.doi.org/10.1016/j.scitotenv.2020.136823] [PMID: 31991276]
[41]
Wiesheu AC, Anger PM, Baumann T, Niessner R, Ivleva NP. Raman microspectroscopic analysis of fibers in beverages. Anal Methods 2016; 8(28): 5722-5.
[http://dx.doi.org/10.1039/C6AY01184E]
[42]
The state of food security and nutrition in the world. Safeguarding against economic slowdowns and downturns. 2019.
[43]
Li D, Shi Y, Yang L, et al. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat Food 2020; 1(11): 746-54.
[http://dx.doi.org/10.1038/s43016-020-00171-y] [PMID: 37128027]
[44]
Mühlschlegel P, Hauk A, Walter U, Sieber R. Lack of evidence for microplastic contamination in honey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34(11): 1982-9.
[http://dx.doi.org/10.1080/19440049.2017.1347281] [PMID: 28665769]
[45]
Diaz-Basantes MF, Conesa JA, Fullana A. Microplastics in honey, beer, milk and refreshments in ecuador as emerging contaminants. Sustainability 2020; 12(14): 5514.
[http://dx.doi.org/10.3390/su12145514]
[46]
Karami A, Golieskardi A, Keong Choo C, Larat V, Galloway TS, Salamatinia B. The presence of microplastics in commercial salts from different countries. Sci Rep 2017; 7(1): 46173.
[http://dx.doi.org/10.1038/srep46173] [PMID: 28383020]
[47]
Prata JC. Airborne microplastics: Consequences to human health? Environ Pollut 2018; 234: 115-26.
[http://dx.doi.org/10.1016/j.envpol.2017.11.043] [PMID: 29172041]
[48]
Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci Total Environ 2020; 702: 134455.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134455] [PMID: 31733547]
[49]
Gasperi J, Wright SL, Dris R, et al. Microplastics in air: Are we breathing it in? Curr Opin Environ Sci Health 2018; 1: 1-5.
[http://dx.doi.org/10.1016/j.coesh.2017.10.002]
[50]
Kremer AM, Pal TM, Boleij JSM, Schouten JP, Rijcken B. Airway hyper-responsiveness and the prevalence of work-related symptoms in workers exposed to irritants. Am J Ind Med 1994; 26(5): 655-69.
[http://dx.doi.org/10.1002/ajim.4700260508] [PMID: 7832213]
[51]
Catarino AI, Macchia V, Sanderson WG, Thompson RC, Henry TB. Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ Pollut 2018; 237: 675-84.
[http://dx.doi.org/10.1016/j.envpol.2018.02.069] [PMID: 29604577]
[52]
Chen G, Feng Q, Wang J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci Total Environ 2020; 703: 135504.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135504] [PMID: 31753503]
[53]
Dris R, Gasperi J, Mirande C, et al. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut 2017; 221: 453-8.
[http://dx.doi.org/10.1016/j.envpol.2016.12.013] [PMID: 27989388]
[54]
Pauly JL, Stegmeier SJ, Allaart HA, et al. Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol Biomarkers Prev 1998; 7(5): 419-28.
[PMID: 9610792]
[55]
Vianello A, Jensen RL, Liu L, Vollertsen J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci Rep 2019; 9(1): 8670.
[http://dx.doi.org/10.1038/s41598-019-45054-w] [PMID: 31209244]
[56]
Lim D, Jeong J, Song KS, Sung JH, Oh SM, Choi J. Inhalation toxicity of polystyrene micro(nano) plastics using modified OECD TG 412. Chemosphere 2021; 262: 128330.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128330] [PMID: 33182093]
[57]
Kumar R, Manna C, Padha S, et al. Micro(nano) plastics pollution and human health: How plastics can induce carcinogenesis to humans? Chemosphere 2022; 298: 134267.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134267] [PMID: 35301996]
[58]
Schirinzi GF, Pérez-Pomeda I, Sanchís J, Rossini C, Farré M, Barceló D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res 2017; 159: 579-87.
[http://dx.doi.org/10.1016/j.envres.2017.08.043] [PMID: 28898803]
[59]
Revel M, Châtel A, Mouneyrac C. Micro(nano)plastics: A threat to human health? Curr Opin Environ Sci Health 2018; 1: 17-23.
[http://dx.doi.org/10.1016/j.coesh.2017.10.003]
[60]
Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 2009; 1(4): 197-206.
[http://dx.doi.org/10.4161/derm.1.4.9501] [PMID: 20592791]
[61]
Zuccarello P, Ferrante M, Cristaldi A, et al. Exposure to microplastics (<10 μm) associated to plastic bottles mineral water consumption: The first quantitative study. Water Res 2019; 157: 365-71.
[http://dx.doi.org/10.1016/j.watres.2019.03.091] [PMID: 30974285]
[62]
Gündoğdu S. Contamination of table salts from Turkey with microplastics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35(5): 1006-14.
[http://dx.doi.org/10.1080/19440049.2018.1447694] [PMID: 29505336]
[63]
Barboza LGA, Lopes C, Oliveira P, et al. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci Total Environ 2020; 717: 134625.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134625] [PMID: 31836230]
[64]
Makhdoumi P, Naghshbandi M, Ghaderzadeh K, Mirzabeigi M, Yazdanbakhsh A, Hossini H. Micro-plastic occurrence in bottled vinegar: Qualification, quantification and human risk exposure. Process Saf Environ Prot 2021; 152: 404-13.
[http://dx.doi.org/10.1016/j.psep.2021.06.022]
[65]
Du F, Cai H, Zhang Q, Chen Q, Shi H. Microplastics in take-out food containers. J Hazard Mater 2020; 399: 122969.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122969] [PMID: 32526446]
[66]
Tamargo A, Molinero N, Reinosa JJ, et al. PET microplastics affect human gut microbiota communities during simulated gastrointestinal digestion, first evidence of plausible polymer biodegradation during human digestion. Sci Rep 2022; 12(1): 528.
[http://dx.doi.org/10.1038/s41598-021-04489-w] [PMID: 35017590]
[67]
Huang W, Yin H, Yang Y, Jin L, Lu G, Dang Z. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: Simulation in vitro with human cell Caco-2 and gut microbiota. Sci Total Environ 2021; 778: 146264.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146264] [PMID: 33725607]
[68]
Xiao J, Jiang X, Zhou Y, et al. Results of a 30-day safety assessment in young mice orally exposed to polystyrene nanoparticles. Environ Pollut 2022; 292(Pt B): 118184.
[http://dx.doi.org/10.1016/j.envpol.2021.118184] [PMID: 34715478]
[69]
Qiao J, Chen R, Wang M, et al. Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction. Nanoscale 2021; 13(19): 8806-16.
[http://dx.doi.org/10.1039/D1NR00038A] [PMID: 33904557]
[70]
Li B, Ding Y, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere 2020; 244: 125492.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125492] [PMID: 31809927]
[71]
Jin Y, Lu L, Tu W, Luo T, Fu Z. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ 2019; 649: 308-17.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.353] [PMID: 30176444]
[72]
Lu L, Wan Z, Luo T, Fu Z, Jin Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ 2018; 631-632: 449-58.
[http://dx.doi.org/10.1016/j.scitotenv.2018.03.051] [PMID: 29529433]
[73]
Noventa S, Boyles MSP, Seifert A, et al. Paradigms to assess the human health risks of nano- and microplastics. Microplast Nanoplast 2021; 1(1): 9.
[http://dx.doi.org/10.1186/s43591-021-00011-1]
[74]
Vethaak AD, Legler J. Microplastics and human health. Science 2021; 371(6530): 672-4.
[http://dx.doi.org/10.1126/science.abe5041] [PMID: 33574197]
[75]
Domingo JL. Polybrominated diphenyl ethers in food and human dietary exposure: A review of the recent scientific literature. Food Chem Toxicol 2012; 50(2): 238-49.
[http://dx.doi.org/10.1016/j.fct.2011.11.004] [PMID: 22100397]
[76]
Linares V, Bellés M, Domingo JL. Human exposure to PBDE and critical evaluation of health hazards. Arch Toxicol 2015; 89(3): 335-56.
[http://dx.doi.org/10.1007/s00204-015-1457-1] [PMID: 25637414]
[77]
Bellés M, Alonso V, Linares V, et al. Behavioral effects and oxidative status in brain regions of adult rats exposed to BDE-99. Toxicol Lett 2010; 194(1-2): 1-7.
[http://dx.doi.org/10.1016/j.toxlet.2010.01.010] [PMID: 20096757]
[78]
Reverte I, Domingo JL, Colomina MT. Neurodevelopmental effects of decabromodiphenyl ether (BDE-209) in APOE transgenic mice. Neurotoxicol Teratol 2014; 46: 10-7.
[http://dx.doi.org/10.1016/j.ntt.2014.08.003] [PMID: 25193018]
[79]
Alonso V, Linares V, Bellés M, et al. Effects of BDE-99 on hormone homeostasis and biochemical parameters in adult male rats. Food Chem Toxicol 2010; 48(8-9): 2206-11.
[http://dx.doi.org/10.1016/j.fct.2010.05.048] [PMID: 20488217]
[80]
Schirinzi GF, Pedà C, Battaglia P, et al. A new digestion approach for the extraction of microplastics from gastrointestinal tracts (GITs) of the common dolphinfish (Coryphaena hippurus) from the western Mediterranean Sea. J Hazard Mater 2020; 397: 122794.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122794] [PMID: 32387826]
[81]
Inkielewicz-Stepniak I, Tajber L, Behan G, et al. The role of mucin in the toxicological impact of polystyrene nanoparticles. Materials 2018; 11(5): 724.
[http://dx.doi.org/10.3390/ma11050724] [PMID: 29751544]
[82]
Stock V, Böhmert L, Lisicki E, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol 2019; 93(7): 1817-33.
[http://dx.doi.org/10.1007/s00204-019-02478-7] [PMID: 31139862]
[83]
Forte M, Iachetta G, Tussellino M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicol In Vitro 2016; 31: 126-36.
[http://dx.doi.org/10.1016/j.tiv.2015.11.006] [PMID: 26585375]
[84]
Elizalde-Velázquez GA, Gómez-Oliván LM. Microplastics in aquatic environments: A review on occurrence, distribution, toxic effects, and implications for human health. Sci Total Environ 2021; 780: 146551.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146551] [PMID: 33773347]
[85]
Monti DM, Guarnieri D, Napolitano G, et al. Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells. J Biotechnol 2015; 193: 3-10.
[http://dx.doi.org/10.1016/j.jbiotec.2014.11.004] [PMID: 25444875]
[86]
Liao Y, Yang J. Microplastic serves as a potential vector for Cr in an in vitro human digestive model. Sci Total Environ 2020; 703: 134805.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134805] [PMID: 31733499]
[87]
Dong CD, Chen CW, Chen YC, Chen HH, Lee JS, Lin CH. Polystyrene microplastic particles: in vitro pulmonary toxicity assessment. J Hazard Mater 2020; 385: 121575.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121575] [PMID: 31727530]
[88]
Chiu HW, Xia T, Lee YH, Chen CW, Tsai JC, Wang YJ. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic reticulum stress. Nanoscale 2015; 7(2): 736-46.
[http://dx.doi.org/10.1039/C4NR05509H] [PMID: 25429417]
[89]
Paget V, Dekali S, Kortulewski T, et al. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages. PLoS One 2015; 10(4): e0123297.
[http://dx.doi.org/10.1371/journal.pone.0123297] [PMID: 25875304]
[90]
Hu Q, Wang H, He C, Jin Y, Fu Z. Polystyrene nanoparticles trigger the activation of p38 MAPK and apoptosis via inducing oxidative stress in zebrafish and macrophage cells. Environ Pollut 2021; 269: 116075.
[http://dx.doi.org/10.1016/j.envpol.2020.116075] [PMID: 33316494]
[91]
Xu M, Halimu G, Zhang Q, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ 2019; 694: 133794.
[http://dx.doi.org/10.1016/j.scitotenv.2019.133794] [PMID: 31756791]
[92]
Kang T, Park C, Lee BJ. Investigation of biomimetic shear stress on cellular uptake and mechanism of polystyrene nanoparticles in various cancer cell lines. Arch Pharm Res 2016; 39(12): 1663-70.
[http://dx.doi.org/10.1007/s12272-016-0847-0] [PMID: 27761800]
[93]
Nakamura K, Itoh K, Yaoi T, Fujiwara Y, Sugimoto T, Fushiki S. Murine neocortical histogenesis is perturbed by prenatal exposure to low doses of bisphenol A. J Neurosci Res 2006; 84(6): 1197-205.
[http://dx.doi.org/10.1002/jnr.21020] [PMID: 16902998]
[94]
Patisaul HB, Bateman HL. Neonatal exposure to endocrine active compounds or an ERβ agonist increases adult anxiety and aggression in gonadally intact male rats. Horm Behav 2008; 53(4): 580-8.
[http://dx.doi.org/10.1016/j.yhbeh.2008.01.008] [PMID: 18308321]
[95]
Fujimoto T, Kubo K, Nishikawa Y, Aou S. Postnatal exposure to low-dose bisphenol A influences various emotional conditions. J Toxicol Sci 2013; 38(4): 539-46.
[http://dx.doi.org/10.2131/jts.38.539] [PMID: 23824010]
[96]
Fang C, Libin Z, Yinyang B, Rong Z, Ling C. Hypothalamic-pituitary-adrenal axis hyperactivity accounts for anxiety- and depression-like behaviors in rats perinatally exposed to bisphenol A. J Biomed Res 2015; 29(3): 250-8.
[http://dx.doi.org/10.7555/JBR.29.20140058] [PMID: 26060449]
[97]
Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and childrens neurodevelopment: A systematic review. Environ Res 2015; 142: 51-60.
[http://dx.doi.org/10.1016/j.envres.2015.06.014] [PMID: 26101203]
[98]
Stein TP, Schluter MD, Steer RA, Guo L, Ming X, Bisphenol A. Bisphenol a exposure in children with autism spectrum disorders. Autism Res 2015; 8(3): 272-83.
[http://dx.doi.org/10.1002/aur.1444] [PMID: 25641946]
[99]
Zhang Q, Chen XZ, Huang X, Wang M, Wu J. The association between prenatal exposure to phthalates and cognition and neurobehavior of children-evidence from birth cohorts. Neurotoxicology 2019; 73: 199-212.
[http://dx.doi.org/10.1016/j.neuro.2019.04.007] [PMID: 31004626]
[100]
Vandenberg LN, Ehrlich S, Belcher SM, et al. Low dose effects of bisphenol A. Endocr Disruptors 2013; 1(1): e26490.
[http://dx.doi.org/10.4161/endo.26490]
[101]
Rubin BS, Bisphenol A. Bisphenol A: An endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 2011; 127(1-2): 27-34.
[http://dx.doi.org/10.1016/j.jsbmb.2011.05.002] [PMID: 21605673]
[102]
Zsarnovszky A, Le HH, Wang HS, Belcher SM. Ontogeny of rapid estrogen-mediated extracellular signal-regulated kinase signaling in the rat cerebellar cortex: Potent nongenomic agonist and endocrine disrupting activity of the xenoestrogen bisphenol A. Endocrinology 2005; 146(12): 5388-96.
[http://dx.doi.org/10.1210/en.2005-0565] [PMID: 16123166]
[103]
Chianese R, Troisi J, Richards S, et al. Bisphenol A in reproduction: Epigenetic effects. Curr Med Chem 2018; 25(6): 748-70.
[http://dx.doi.org/10.2174/0929867324666171009121001] [PMID: 28990514]
[104]
Kandaraki E, Chatzigeorgiou A, Livadas S, et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): Elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab 2011; 96(3): E480-4.
[http://dx.doi.org/10.1210/jc.2010-1658] [PMID: 21193545]
[105]
Barakat R, Lin PCP, Rattan S, et al. Prenatal exposure to DEHP induces premature reproductive senescence in male mice. Toxicol Sci 2017; 156(1): kfw248.
[http://dx.doi.org/10.1093/toxsci/kfw248] [PMID: 28082598]
[106]
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 2018; 78: 34-60.
[http://dx.doi.org/10.1016/j.tifs.2018.05.018]
[107]
Burton GA Jr. Stressor exposures determine risk: So, why do fellow scientists continue to focus on superficial microplastics risk? Environ Sci Technol 2017; 51(23): 13515-6.
[http://dx.doi.org/10.1021/acs.est.7b05463] [PMID: 29148729]
[108]
Steensgaard IM, Syberg K, Rist S, Hartmann NB, Boldrin A, Hansen SF. From macro- to microplastics - Analysis of EU regulation along the life cycle of plastic bags. Environ Pollut 2017; 224: 289-99.
[http://dx.doi.org/10.1016/j.envpol.2017.02.007] [PMID: 28222979]
[109]
Lares M, Ncibi MC, Sillanpää M, Sillanpää M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 2018; 133: 236-46.
[http://dx.doi.org/10.1016/j.watres.2018.01.049] [PMID: 29407704]
[110]
Eerkes-Medrano D, Leslie HA, Quinn B. Microplastics in drinking water: A review and assessment. Curr Opin Environ Sci Health 2019; 7: 69-75.
[http://dx.doi.org/10.1016/j.coesh.2018.12.001]
[111]
Perren W, Wojtasik A, Cai Q. Removal of microbeads from wastewater using electrocoagulation. ACS Omega 2018; 3(3): 3357-64.
[http://dx.doi.org/10.1021/acsomega.7b02037] [PMID: 31458591]
[112]
Ma B, Xue W, Hu C, Liu H, Qu J, Li L. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem Eng J 2019; 359: 159-67.
[http://dx.doi.org/10.1016/j.cej.2018.11.155]
[113]
Paço A, Jacinto J, da Costa JP, et al. Biotechnological tools for the effective management of plastics in the environment. Crit Rev Environ Sci Technol 2019; 49(5): 410-41.
[http://dx.doi.org/10.1080/10643389.2018.1548862]
[114]
Rivas D, Ginebreda A, Pérez S, Quero C, Barceló D. MALDI-TOF MS Imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions. Sci Total Environ 2016; 566-567: 27-33.
[http://dx.doi.org/10.1016/j.scitotenv.2016.05.090] [PMID: 27213667]
[115]
Ciriminna R, Pagliaro M. Biodegradable and compostable plastics: A critical perspective on the dawn of their global adoption. ChemistryOpen 2020; 9(1): 8-13.
[http://dx.doi.org/10.1002/open.201900272] [PMID: 31921539]
[116]
Zumstein MT, Rechsteiner D, Roduner N, et al. Enzymatic hydrolysis of polyester thin films at the nanoscale: Effects of polyester structure and enzyme active-site accessibility. Environ Sci Technol 2017; 51(13): 7476-85.
[http://dx.doi.org/10.1021/acs.est.7b01330] [PMID: 28538100]
[117]
Lam CS, Ramanathan S, Carbery M, et al. A comprehensive analysis of plastics and microplastic legislation worldwide. Water Air Soil Pollut 2018; 229(11): 345.
[http://dx.doi.org/10.1007/s11270-018-4002-z]
[118]
Penca J. European Plastics Strategy: What promise for global marine litter? Mar Policy 2018; 97: 197-201.
[http://dx.doi.org/10.1016/j.marpol.2018.06.004]
[119]
Lau WWY, Shiran Y, Bailey RM, et al. Evaluating scenarios toward zero plastic pollution. Science 2020; 369(6510): 1455-61.
[http://dx.doi.org/10.1126/science.aba9475] [PMID: 32703909]