Current Nutrition & Food Science

Author(s): Dinesh Kumar Patel*

DOI: 10.2174/1573401319666230602121227

Biological Potential and Therapeutic Effectiveness of Hinokiflavone in Medicine: The Effective Components of Herbal Medicines for Treatment of Cancers and Associated Complications

Page: [439 - 449] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Plants have been providing us medicines and food material for centuries. Traditional system of medicine, including Ayurveda, and Traditional Chinese medicines have been playing important role in health sectors for the treatment of human disorders since very early age. Plant secondary metabolites, including flavonoids, coumarins, saponins, and tannins have significant therapeutic potential in medicine. Biflavonoids are dimers of flavonoids, linked by a C–O–C or C–C bond. Hinokiflavone is an important class of biflavonoids found to be present in Toxicodendron succedaneum, Isophysis tasmanica, Juniperus rigida, Juniperus phoenicea, Platycladi cacumen, Rhus succedanea, Selaginella tamariscina, Platycladus orientalis, Selaginella bryopteris, and Metasequoia glyptostroboides.

Methods: Biological potential of hinokiflavone in medicine have been analyzed in the present work through scientific data analysis of various literature work. Scientific database, including Google, Scopus, Science Direct, and PubMed were searched to collect all the scientific information of the present work using terms flavonoid, biflavonoid, herbal medicine, and hinokiflavone. Pharmacological activities of hinokiflavone were analyzed in the present work in very detailed manner. Analytical data of hinokiflavone were collected and analyzed in present work in order to know the biological source of hinokiflavone.

Results: Present work signified the biological importance of hinokiflavone against various types of cancerous disorders, including breast cancer, colorectal cancer, esophageal squamous cancer, adenocarcinoma, hepatocellular carcinoma, myeloid leukemia, and melanoma. Further, its antiinflammatory, hepatoprotective, anti-viral, and anti-oxidant potential were also discussed in the present work. Moreover, its biological potential against COVID-19 and hair loss, and procoagulant activity were also summarized in this paper. Analytical data on hinokiflavone signified the importance of various analytical techniques in the extraction, separation, and identification of hinokiflavone with their pharmacokinetic parameters.

Conclusion: Present work signified the biological importance and therapeutic potential of hinokiflavone in medicine.

Graphical Abstract

[1]
Pereañez JA, Patiño AC, Núñez V, Osorio E. The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. Chem Biol Interact 2014; 220: 94-101.
[http://dx.doi.org/10.1016/j.cbi.2014.06.015] [PMID: 24995575]
[2]
Shahbaz A, Abbasi BA, Iqbal J, et al. Chemical composition of Gastrocotyle hispida (Forssk.) bunge and Heliotropium crispum Desf. and evaluation of their multiple in vitro> biological potentials. Saudi J Biol Sci 2021; 28(11): 6086-96.
[http://dx.doi.org/10.1016/j.sjbs.2021.09.040] [PMID: 34764742]
[3]
Mahmud S, Paul GK, Afroze M, et al. Efficacy of phytochemicals derived from Avicennia officinalis for the management of COVID-19: A combined in silico and biochemical study. Molecules 2021; 26(8): 2210.
[http://dx.doi.org/10.3390/molecules26082210] [PMID: 33921289]
[4]
Malafronte N, Vassallo A, Dal Piaz F, Bader A, Braca A, De Tommasi N. Biflavonoids from Daphne linearifolia Hart. Phytochem Lett 2012; 5(3): 621-5.
[http://dx.doi.org/10.1016/j.phytol.2012.06.008]
[5]
Acuña UM, Dastmalchi K, Basile MJ, Kennelly EJ. Quantitative high-performance liquid chromatography photo-diode array (HPLC-PDA) analysis of benzophenones and biflavonoids in eight Garcinia species. J Food Compos Anal 2012; 25(2): 215-20.
[http://dx.doi.org/10.1016/j.jfca.2011.10.006]
[6]
Khan MF, Kader FB, Arman M, et al. Pharmacological insights and prediction of lead bioactive isolates of Dita bark through experimental and computer-aided mechanism. Biomed Pharmacother 2020; 131: 110774.
[http://dx.doi.org/10.1016/j.biopha.2020.110774] [PMID: 33152933]
[7]
Rezende C, de Oliveira GV, Alvares TS. A high single oral dose of turmeric extract (Curcuma longa L.) does not improve skeletal muscle microvascular reactivity in older subjects. Pharmacol Res Modern Chinese Med 2022; 2: 100025.
[http://dx.doi.org/10.1016/j.prmcm.2021.100025]
[8]
Melucci D, Locatelli M, Casolari S, Locatelli C. New polluting metals. Quantification in herbal medicines by voltammetric and spectroscopic analytical methods. J Pharm Biomed Anal 2022; 211: 114599.
[http://dx.doi.org/10.1016/j.jpba.2022.114599] [PMID: 35077923]
[9]
Küpeli AE, Tatlı CI, Şeker KG, Carpar E, Sobarzo-Sánchez E, Capasso R. Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Front Pharmacol 2021; 12: 669638.
[http://dx.doi.org/10.3389/fphar.2021.669638] [PMID: 34054540]
[10]
Tan M, Wang L, Guan K, Li CC, Chen C. Spenceria ramalana Trimen total polyphenols modulate the inflammatory response and intestinal flora in DSS-induced ulcerative colitis in C57BL/6 mice. Pharmacol Res Modern Chinese Med 2022; 2: 100042.
[http://dx.doi.org/10.1016/j.prmcm.2022.100042]
[11]
Wang B, Ding Y, Zhao P, et al. Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Comput Biol Med 2022; 143: 105241.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105241] [PMID: 35114443]
[12]
Usman A, Kawu MU, Shittu M, et al. Comparative effects of methanol leaf extract of Moringa oleifera and ascorbic acid on haematological and histopathological changes induced by subchronic lead toxicity in male wistar rats. Pharmacol Res Mod Chinese Med 2022; 2: 100031.
[http://dx.doi.org/10.1016/j.prmcm.2021.100031]
[13]
John OO, Amarachi IS, Chinazom AP, Adaeze E, Kale MB, Umare MD. Phytotherapy: A promising approach for the treatment of Alzheimer’s disease. Pharmacol Res -. Zhongguo Xiandai Zhongyao 2022; 2: 100030.
[14]
Ezeorba TPC, Chukwudozie KI, Ezema CA, Anaduaka EG, Nweze EJ, Okeke ES. Potentials for health and therapeutic benefits of garlic essential oils: Recent findings and future prospects. Pharmacol Res Mod Chinese Med 2022; 3: 100075.
[http://dx.doi.org/10.1016/j.prmcm.2022.100075]
[15]
Zhou Z, Li D, Fan X, et al. Gold nanoclusters for optimizing the general efficacies of herbal medicines on nerve repair after spinal cord injury. Mater Des 2022; 215: 110465.
[http://dx.doi.org/10.1016/j.matdes.2022.110465]
[16]
Patel K, Patel DK. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects. Curr Bioact Compd 2020; 16(3): 191-200.
[http://dx.doi.org/10.2174/1573407214666181023115355]
[17]
Patel K, Patel DK. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention. Curr Bioact Comp 2021; 17(3): 206-13.
[http://dx.doi.org/10.2174/1573407216999200609130841]
[18]
Patel DK. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders. Curr Bioact Compd 2022; 18(3): e240821195804.
[http://dx.doi.org/10.2174/1573407217666210824125427]
[19]
Yang CM, Chien MY, Chao PC, Huang CM, Chen CH. Investigation of toxic heavy metals content and estimation of potential health risks in Chinese herbal medicine. J Hazard Mater 2021; 412: 125142.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125142] [PMID: 33516113]
[20]
Ma Y, Meng X, Pan R, et al. Use the Chinese herbal compound regulatory network to verify the relationship between the Jun, Chen, Zuo, and Shi of Xiaochaihu Decoction in treating hepatitis. Pharmacological Research - Modern Chinese Medicine 2022; 2: 100023.
[http://dx.doi.org/10.1016/j.prmcm.2021.100023]
[21]
Wan H, Tian Y, Jiang H, Zhang X, Ju X. A NMR-based drug screening strategy for discovering active substances from herbal medicines: Using Radix Polygoni Multiflori as example. J Ethnopharmacol 2020; 254: 112712.
[http://dx.doi.org/10.1016/j.jep.2020.112712] [PMID: 32105747]
[22]
Zhu J, Zhang Z, Wang R, Huang X, Zhou Y, Zhang K. Nanoparticles derived from Scutellaria barbata and Hedytois diffusa herb pair and their anti-cancer activity. Pharmacol Res -. Zhongguo Xiandai Zhongyao 2022; 2: 100048.
[23]
Wu Y, Sun L, Zeng F, Wu S. A conjugated-polymer-based ratiometric nanoprobe for evaluating in-vivo hepatotoxicity induced by herbal medicine via MSOT imaging. Photoacoustics 2019; 13: 6-17.
[http://dx.doi.org/10.1016/j.pacs.2018.11.002] [PMID: 30519528]
[24]
Patel K, Kumar V, Rahman M, Verma A, Patel DK. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni Suef Univ J Basic Appl Sci 2018; 7(1): 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[25]
Chen L, Mulder PPJ, Peijnenburg A, Rietjens IMCM. Risk assessment of intake of pyrrolizidine alkaloids from herbal teas and medicines following realistic exposure scenarios. Food Chem Toxicol 2019; 130: 142-53.
[http://dx.doi.org/10.1016/j.fct.2019.05.024] [PMID: 31112705]
[26]
de Oliveira VS, Augusta IM, Braz MVC, et al. Aroeira fruit (Schinus terebinthifolius Raddi) as a natural antioxidant: Chemical constituents, bioactive compounds and in vitro and in vivo antioxidant capacity. Food Chem 2020; 315: 126274.
[http://dx.doi.org/10.1016/j.foodchem.2020.126274] [PMID: 32007814]
[27]
Lee HW, Jun JH, Choi J, et al. Herbal prescription for managing menopausal disorders: A practice survey in Korean medicine doctors. Complement Ther Clin Pract 2020; 38: 101073.
[http://dx.doi.org/10.1016/j.ctcp.2019.101073] [PMID: 31765985]
[28]
Patel DK. Health beneficial aspect and therapeutic potential of cirsimaritin in the medicine for the treatment of human health complications. Curr Bioact Compd 2022; 18(7): e270122200566.
[http://dx.doi.org/10.2174/1573407218666220127092925]
[29]
Lu PH, Tseng CW, Lee JL, et al. Jing Si herbal drink as a prospective adjunctive therapy for COVID-19 treatment: Molecular evidence and mechanisms. Pharmacol Res Mod Chinese Med 2022; 2: 100024.
[http://dx.doi.org/10.1016/j.prmcm.2021.100024]
[30]
Wang T, Hou Z, Chen X, Zhao L, Zhu D, Wang N. Analysis of the medication rules of traditional Chinese medicines (TCMs) in treating liver cancer and potential TCMs exploration. Pharmacol Res -. Zhongguo Xiandai Zhongyao 2022; 3: 100086.
[31]
Miao Z, Zhao Y, Chen M, He C. Using flavonoids as a therapeutic intervention against rheumatoid arthritis: The known and unknown. Pharmacol Res Mod Chinese Med 2022; 3: 100014.
[http://dx.doi.org/10.1016/j.prmcm.2021.100014]
[32]
Schnarr L, Segatto ML, Olsson O, Zuin VG, Kümmerer K. Flavonoids as biopesticides – Systematic assessment of sources, structures, activities and environmental fate. Sci Total Environ 2022; 824: 153781.
[http://dx.doi.org/10.1016/j.scitotenv.2022.153781] [PMID: 35176375]
[33]
Mercader AG, Pomilio AB. QSAR study of flavonoids and biflavonoids as influenza H1N1 virus neuraminidase inhibitors. Eur J Med Chem 2010; 45(5): 1724-30.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.005] [PMID: 20116898]
[34]
Patel K, Patel DK. Therapeutic benefit and biological importance of ginkgetin in the medicine: Medicinal importance, pharmacological activities and analytical aspects. Curr Bioact Compd 2021; 17(9): e190721190770.
[http://dx.doi.org/10.2174/1573407217666210127091221]
[35]
Zhang H, Hao F, Yao Z, Zhu J, Jing X, Wang X. Efficient extraction of flavonoids from Polygonatum sibiricum using a deep eutectic solvent as a green extraction solvent. Microchem J 2022; 175: 107168.
[http://dx.doi.org/10.1016/j.microc.2021.107168]
[36]
Premathilaka R, Rashidinejad A, Golding M, Singh J. Oral delivery of hydrophobic flavonoids and their incorporation into functional foods: Opportunities and challenges. Food Hydrocoll 2022; 128: 107567.
[http://dx.doi.org/10.1016/j.foodhyd.2022.107567]
[37]
Farcuh M, Tajima H, Lerno LA, Blumwald E. Changes in ethylene and sugar metabolism regulate flavonoid composition in climacteric and non-climacteric plums during postharvest storage. Food Chem 2022; 4: 100075.
[http://dx.doi.org/10.1016/j.fochms.2022.100075] [PMID: 35415701]
[38]
Zhang N, Zhou Q, Zhao Y, et al. Chitosan and flavonoid glycosides are promising combination partners for enhanced inhibition of heterocyclic amine formation in roast beef. Food Chem 2022; 375: 131859.
[http://dx.doi.org/10.1016/j.foodchem.2021.131859] [PMID: 34933234]
[39]
Shi S, Li J, Zhao X, Liu Q, Song SJ. A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry 2021; 191: 112895.
[http://dx.doi.org/10.1016/j.phytochem.2021.112895] [PMID: 34403885]
[40]
Tong Y, Lv Y, Yu S, Lyu Y, Zhang L, Zhou J. Improving (2S)-naringenin production by exploring native precursor pathways and screening higher-active chalcone synthases from plants rich in flavonoids. Enzyme Microb Technol 2022; 156: 109991.
[http://dx.doi.org/10.1016/j.enzmictec.2022.109991] [PMID: 35151990]
[41]
Xue Q, Liu X, Russell P, et al. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol Environ Saf 2022; 233: 113323.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113323] [PMID: 35183811]
[42]
Lim J, Ferruzzi MG, Hamaker BR. Structural requirements of flavonoids for the selective inhibition of α-amylase versus α-glucosidase. Food Chem 2022; 370: 130981.
[http://dx.doi.org/10.1016/j.foodchem.2021.130981] [PMID: 34500290]
[43]
Zhang F, Ma Z, Qiao Y, et al. Transcriptome sequencing and metabolomics analyses provide insights into the flavonoid biosynthesis in Torreya grandis kernels. Food Chem 2022; 374: 131558.
[http://dx.doi.org/10.1016/j.foodchem.2021.131558] [PMID: 34794838]
[44]
Chen X, Wang H, Huang X, et al. Efficient enrichment of total flavonoids from kale (Brassica oleracea L. var. acephala L.) extracts by NKA-9 resin and antioxidant activities of flavonoids extract in vitro. Food Chem 2022; 374: 131508.
[http://dx.doi.org/10.1016/j.foodchem.2021.131508] [PMID: 34906804]
[45]
Yamaguchi LF, Vassão DG, Kato MJ, Di Mascio P. Biflavonoids from Brazilian pine Araucaria angustifolia as potentials protective agents against DNA damage and lipoperoxidation. Phytochemistry 2005; 66(18): 2238-47.
[http://dx.doi.org/10.1016/j.phytochem.2004.11.014] [PMID: 16153416]
[46]
Xu J, Yang L, Wang R, Zeng K, Fan B, Zhao Z. The biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella uncinata and their antihyperglycemic action. Fitoterapia 2019; 137: 104255.
[http://dx.doi.org/10.1016/j.fitote.2019.104255] [PMID: 31271785]
[47]
Wang M, Wu Z, Ji F, Wang C, Zhao G. Ultrafast nonadiabatic mechanism of plant sunscreens biflavonoids with two excited-state intramolecular proton transfer structures. J Lumin 2022; 246: 118816.
[http://dx.doi.org/10.1016/j.jlumin.2022.118816]
[48]
Sagrera G, Bertucci A, Vazquez A, Seoane G. Synthesis and antifungal activities of natural and synthetic biflavonoids. Bioorg Med Chem 2011; 19(10): 3060-73.
[http://dx.doi.org/10.1016/j.bmc.2011.04.010] [PMID: 21530273]
[49]
Sum TJ, Sum TH, Galloway WRJD, Twigg DG, Ciardiello JJ, Spring DR. Synthesis of structurally diverse biflavonoids. Tetrahedron 2018; 74(38): 5089-101.
[http://dx.doi.org/10.1016/j.tet.2018.05.003]
[50]
Xie Y, Zhou X, Li J, et al. Cytotoxic effects of the biflavonoids isolated from Selaginella trichoclada on MCF-7 cells and its potential mechanism. Bioorg Med Chem Lett 2022; 56: 128486.
[http://dx.doi.org/10.1016/j.bmcl.2021.128486] [PMID: 34875389]
[51]
Zheng X, Meng WD, Qing FL. Synthesis of gem-difluoromethylenated biflavonoid via the Suzuki coupling reaction. Tetrahedron Lett 2004; 45(43): 8083-5.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.180]
[52]
Dias JC, Rebelo MM, Alves CN. A semi-empirical study of biflavonoid compounds with biological activity against tuberculosis. J Mol Struct Theochem 2004; 676(1-3): 83-7.
[http://dx.doi.org/10.1016/j.theochem.2004.03.001]
[53]
Goossens JF, Goossens L, Bailly C. Hinokiflavone and related C–O–C-type biflavonoids as anti-cancer compounds: Properties and mechanism of action. Nat Prod Bioprospect 2021; 11(4): 365-77.
[http://dx.doi.org/10.1007/s13659-021-00298-w] [PMID: 33534099]
[54]
Shan C, Guo S, Yu S, et al. Simultaneous determination of quercitrin, afzelin, amentoflavone, hinokiflavone in Rat plasma by UFLC–MS-MS and its application to the pharmacokinetics of Platycladus orientalis leaves extract. J Chromatogr Sci 2018; 56(10): 895-902.
[http://dx.doi.org/10.1093/chromsci/bmy066] [PMID: 29982351]
[55]
Mondal S, Karmakar A, Mallick T, Begum NA. Exploring the efficacy of naturally occurring biflavone based antioxidants towards the inhibition of the SARS-CoV-2 spike glycoprotein mediated membrane fusion. Virology 2021; 556: 133-9.
[http://dx.doi.org/10.1016/j.virol.2021.01.015] [PMID: 33571798]
[56]
Menezes JCJMDS, Diederich MF. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol Res 2021; 167: 105525.
[http://dx.doi.org/10.1016/j.phrs.2021.105525] [PMID: 33667686]
[57]
Menezes JCJMDS, Campos VR. Natural biflavonoids as potential therapeutic agents against microbial diseases. Sci Total Environ 2021; 769: 145168.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145168] [PMID: 33493916]
[58]
Zhou J, Zhao R, Ye T, et al. Antitumor activity in colorectal cancer induced by hinokiflavone. J Gastroenterol Hepatol 2019; 34(9): 1571-80.
[http://dx.doi.org/10.1111/jgh.14581] [PMID: 30575109]
[59]
Mu W, Cheng X, Zhang X, et al. Hinokiflavone induces apoptosis via activating mitochondrial ROS/JNK/caspase pathway and inhibiting NF-κB activity in hepatocellular carcinoma. J Cell Mol Med 2020; 24(14): 8151-65.
[http://dx.doi.org/10.1111/jcmm.15474] [PMID: 32519392]
[60]
Lin YM, Chen FC, Lee KH. Hinokiflavone, a cytotoxic principle from Rhus succedanea and the cytotoxicity of the related biflavonoids. Planta Med 1989; 55(2): 166-8.
[http://dx.doi.org/10.1055/s-2006-961914] [PMID: 2526343]
[61]
Zhang Y, Shi S, Wang Y, Huang K. Target-guided isolation and purification of antioxidants from Selaginella sinensis by offline coupling of DPPH-HPLC and HSCCC experiments. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879(2): 191-6.
[http://dx.doi.org/10.1016/j.jchromb.2010.12.004] [PMID: 21183411]
[62]
Yang S, Zhang Y, Luo Y, et al. Hinokiflavone induces apoptosis in melanoma cells through the ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion. Biomed Pharmacother 2018; 103: 101-10.
[http://dx.doi.org/10.1016/j.biopha.2018.02.076] [PMID: 29635122]
[63]
Huang W, Liu C, Liu F, Liu Z, Lai G, Yi J. Hinokiflavone induces apoptosis and inhibits migration of breast cancer cells via EMT signalling pathway. Cell Biochem Funct 2020; 38(3): 249-56.
[http://dx.doi.org/10.1002/cbf.3443] [PMID: 32107809]
[64]
Guo J, Zhang S, Wang J, Zhang P, Lu T, Zhang L. Hinokiflavone inhibits growth of esophageal squamous cancer by inducing apoptosis via regulation of the PI3K/AKT/mTOR signaling pathway. Front Oncol 2022; 12: 833719. eCollection 2022
[http://dx.doi.org/10.3389/fonc.2022.833719.]
[65]
Chen Y, Feng X, Li L, Song K, Zhang L. Preparation and antitumor evaluation of hinokiflavone hybrid micelles with mitochondria targeted for lung adenocarcinoma treatment. Drug Deliv 2020; 27(1): 565-74.
[http://dx.doi.org/10.1080/10717544.2020.1748760] [PMID: 32252563]
[66]
Yin R, Xiong K, Wen S, Wang Y, Xu F. Development and validation of an LC-MS/MS method for the determination of hinokiflavone in rat plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2017; 31(3): e3821.
[http://dx.doi.org/10.1002/bmc.3821] [PMID: 27552190]
[67]
Abdel-Kader MS, Abulhamd AT, Hamad AM, Alanazi AH, Ali R, Alqasoumi SI. Evaluation of the hepatoprotective effect of combination between hinokiflavone and Glycyrrhizin against CCl4 induced toxicity in rats. Saudi Pharm J 2018; 26(4): 496-503.
[http://dx.doi.org/10.1016/j.jsps.2018.02.009] [PMID: 29844720]
[68]
Ninfali P, Dominici S, Angelino D, Gennari L, Buondelmonte C, Giorgi L. An enzyme-linked immunosorbent assay for the measurement of plasma flavonoids in mice fed apigenin- C -glycoside. J Sci Food Agric 2013; 93(12): 3087-93.
[http://dx.doi.org/10.1002/jsfa.6143] [PMID: 23526334]
[69]
Ilic VK, Egorova O, Tsang E, et al. Hinokiflavone inhibits MDM2 activity by targeting the MDM2-MDMX RING domain. Biomolecules 2022; 12(5): 643.
[http://dx.doi.org/10.3390/biom12050643] [PMID: 35625571]
[70]
Kalva S, Azhagiya Singam ER, Rajapandian V, Saleena LM, Subramanian V. Discovery of potent inhibitor for matrix metalloproteinase-9 by pharmacophore based modeling and dynamics simulation studies. J Mol Graph Model 2014; 49: 25-37.
[http://dx.doi.org/10.1016/j.jmgm.2013.12.008] [PMID: 24473069]
[71]
Zhang G, Jing Y, Zhang H, et al. Isolation and cytotoxic activity of selaginellin derivatives and biflavonoids from Selaginella tamariscina. Planta Med 2012; 78(4): 390-2.
[http://dx.doi.org/10.1055/s-0031-1298175] [PMID: 22271084]
[72]
Zhang S, Wang Y, Sun Y, et al. Hinokiflavone, as a MDM2 inhibitor, activates p53 signaling pathway to induce apoptosis in human colon cancer HCT116 cells. Biochem Biophys Res Commun 2022; 594: 93-100.
[http://dx.doi.org/10.1016/j.bbrc.2022.01.032] [PMID: 35078113]
[73]
Qin X, Chen X, Guo L, et al. Hinokiflavone induces apoptosis, cell cycle arrest and autophagy in chronic myeloid leukemia cells through MAPK/NF-κB signaling pathway. BMC complement med 2022; 22(1): 100.
[http://dx.doi.org/10.1186/s12906-022-03580-7] [PMID: 35387632]
[74]
Peng L, Qiu J, Liu L, Li X, Liu X, Zhang Y. Preparation of PEG/ZIF-8@HF drug delivery system for melanoma treatment via oral administration. Drug Deliv 2022; 29(1): 1075-85.
[http://dx.doi.org/10.1080/10717544.2022.2058649] [PMID: 35373691]
[75]
Shim SY, Lee S, Lee M. Biflavonoids isolated from Selaginella tamariscina and their anti-inflammatory activities via ERK 1/2 Signaling. Molecules 2018; 23(4): 926.
[http://dx.doi.org/10.3390/molecules23040926] [PMID: 29673161]
[76]
Alqasoumi SI, Farraj AI, Abdel-Kader MS. Study of the hepatoprotective effect of Juniperus phoenicea constituents. Pak J Pharm Sci 2013; 26(5): 999-1008.
[PMID: 24035959]
[77]
Lin YM, Flavin MT, Schure R, et al. Antiviral activities of biflavonoids. Planta Med 1999; 65(2): 120-5.
[http://dx.doi.org/10.1055/s-1999-13971] [PMID: 10193201]
[78]
Lin YM, Anderson H, Flavin MT, et al. in vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod 1997; 60(9): 884-8.
[http://dx.doi.org/10.1021/np9700275] [PMID: 9322359]
[79]
Pawellek A, Ryder U, Tammsalu T, et al. Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. eLife 2017; 6: e27402.
[http://dx.doi.org/10.7554/eLife.27402] [PMID: 28884683]
[80]
Coulerie P, Eydoux C, Hnawia E, et al. Biflavonoids of Dacrydium balansae with potent inhibitory activity on dengue 2 NS5 polymerase. Planta Med 2012; 78(7): 672-7.
[http://dx.doi.org/10.1055/s-0031-1298355] [PMID: 22411725]
[81]
Belhassan A, Zaki H, Chtita S, et al. Camphor, artemisinin and sumac phytochemicals as inhibitors against COVID-19: computational approach. Comput Biol Med 2021; 136: 104758.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104758] [PMID: 34411900]
[82]
Sawant S, Patil R, Khawate M, Zambre V, Shilimkar V, Jagtap S. Computational assessment of select antiviral phytochemicals as potential SARS-Cov-2 main protease inhibitors: Molecular dynamics guided ensemble docking and extended molecular dynamics. In Silico Pharmacol 2021; 9(1): 44.
[http://dx.doi.org/10.1007/s40203-021-00107-9] [PMID: 34306960]
[83]
Ristovski JT, Matin MM, Kong R, Kusturica MP, Zhang H. In vitro testing and computational analysis of specific phytochemicals with antiviral activities considering their possible applications against COVID-19. S Afr J Bot 2022; 151: 248-58.
[http://dx.doi.org/10.1016/j.sajb.2022.02.009] [PMID: 35165493]
[84]
Fong P, Tong HHY, Ng KH, Lao CK, Chong CI, Chao CM. In silico prediction of prostaglandin D2 synthase inhibitors from herbal constituents for the treatment of hair loss. J Ethnopharmacol 2015; 175: 470-80.
[http://dx.doi.org/10.1016/j.jep.2015.10.005] [PMID: 26456343]
[85]
Lee S, Park NJ, Bong SK, et al. Ameliorative effects of Juniperus rigida fruit on oxazolone- and 2,4-dinitrochlorobenzene-induced atopic dermatitis in mice. J Ethnopharmacol 2018; 214: 160-7.
[http://dx.doi.org/10.1016/j.jep.2017.12.022] [PMID: 29258854]
[86]
Lei J, Zhu L, Zheng Y, et al. Homogenate-ultrasound-assisted ionic liquid extraction of total flavonoids from Selaginella involven: Process optimization, composition identification, and antioxidant activity. ACS Omega 2021; 6(22): 14327-40.
[http://dx.doi.org/10.1021/acsomega.1c01087] [PMID: 34124456]
[87]
Negm WA, El-Aasr M, Kamer AA, Elekhnawy E. Investigation of the antibacterial activity and efflux pump inhibitory effect of Cycas thouarsii R.Br. extract against Klebsiella pneumoniae clinical isolates. Pharmaceuticals 2021; 14(8): 756.
[http://dx.doi.org/10.3390/ph14080756] [PMID: 34451853]
[88]
Shi DH, Dai YP, Su BZ, Sun LL, Zhang XL, Zhang J. Study on internal and external quality control methods of Platycladi Cacumen Carbonisata based on QAMS and color recognition. Zhongguo Zhongyao Zazhi 2020; 45(24): 5996-6002.
[PMID: 33496140]
[89]
Li D, Sun C, Yang J, et al. Ionic liquid-microwave-based extraction of biflavonoids from Selaginella sinensis. Molecules 2019; 24(13): 2507.
[http://dx.doi.org/10.3390/molecules24132507] [PMID: 31324010]
[90]
Chen Y, Feng X, Li L, et al. UHPLC-Q-TOF-MS/MS method based on four-step strategy for metabolites of hinokiflavone in vivo and in vitro. J Pharm Biomed Anal 2019; 169: 19-29.
[http://dx.doi.org/10.1016/j.jpba.2019.02.034] [PMID: 30831449]
[91]
Venditti A, Maggi F, Quassinti L, et al. Bioactive Constituents of Juniperus turbinata Guss. from La Maddalena Archipelago. Chem Biodivers 2018; 15(8): e1800148.
[http://dx.doi.org/10.1002/cbdv.201800148] [PMID: 29790302]
[92]
Shan M, Li SFY, Yu S, et al. Chemical fingerprint and quantitative analysis for the quality evaluation of Platycladi cacumen by ultra-performance liquid chromatography coupled with hierarchical cluster analysis. J Chromatogr Sci 2018; 56(1): 41-8.
[http://dx.doi.org/10.1093/chromsci/bmx079] [PMID: 28977346]
[93]
Wang G, Yao S, Zhang X-X, Song H. Rapid screening and structural characterization of antioxidants from the extract of Selaginella doederleinii hieron with DPPH-UPLC-Q-TOF/MS method. Int J Anal Chem 2015; 2015: 1-9.
[94]
Cao Y, Wu Y, Zhou X, Qian F, Fan H, Wang Q. Simultaneous determination of selaginellins and biflavones in Selaginella tamariscina and S. pulvinata by HPLC. Zhongguo Zhongyao Zazhi 2012; 37(9): 1254-8.
[PMID: 22803371]
[95]
Zhang YX, Li QY, Yan LL, Shi Y. Structural characterization and identification of biflavones in Selaginella tamariscina by liquid chromatography-diode-array detection/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2011; 25(15): 2173-86.
[http://dx.doi.org/10.1002/rcm.5090] [PMID: 21710597]
[96]
Cheng XL, Ma SC, Yu JD, et al. Selaginellin A and B, two novel natural pigments isolated from Selaginella tamariscina. Chem Pharm Bull 2008; 56(7): 982-4.
[http://dx.doi.org/10.1248/cpb.56.982] [PMID: 18591814]
[97]
Yuan Y, Wang B, Chen L, et al. How to realize the linear scale-up process for rapid purification using high-performance counter-current chromatography. J Chromatogr A 2008; 1194(2): 192-8.
[http://dx.doi.org/10.1016/j.chroma.2008.04.049] [PMID: 18479689]
[98]
Swamy RC, Kunert O, Schühly W, et al. Structurally unique biflavonoids from Selaginella chrysocaulos and Selaginella bryopteris. Chem Biodivers 2006; 3(4): 405-14.
[http://dx.doi.org/10.1002/cbdv.200690044] [PMID: 17193277]
[99]
Dai Z, Ma SC, Wang GL, Wang F, Lin RC. A new glucoside from Selaginella sinensis. J Asian Nat Prod Res 2006; 8(6): 529-33.
[http://dx.doi.org/10.1080/10286020500175874] [PMID: 16931428]
[100]
Krauze-Baranowska M, Pobłocka L, El Helab AA. Biflavones from Chamaecyparis obtusa. Z Naturforsch C J Biosci 2005; 60(9-10): 679-85.
[http://dx.doi.org/10.1515/znc-2005-9-1004] [PMID: 16320608]
[101]
Das B, Mahender G, Koteswara Rao Y, Prabhakar A, Jagadeesh B. Biflavonoids from Cycas beddomei. Chem Pharm Bull 2005; 53(1): 135-6.
[http://dx.doi.org/10.1248/cpb.53.135] [PMID: 15635250]
[102]
Ma LY, Ma SC, Wei F, et al. Uncinoside A and B, two new antiviral chromone glycosides from Selaginella uncinata. Chem Pharm Bull 2003; 51(11): 1264-7.
[http://dx.doi.org/10.1248/cpb.51.1264] [PMID: 14600370]
[103]
Krauze-Baranowska M, Cisowski W, Wiwart M, Madziar B. Antifungal biflavones from Cupressocyparis leylandii. Planta Med 1999; 65(6): 572-3.
[http://dx.doi.org/10.1055/s-2006-960828] [PMID: 10532874]
[104]
Darwish RS, Hammoda HM, Ghareeb DA, Abdelhamid ASA, Harraz FM, Shawky E. Seasonal dynamics of the phenolic constituents of the cones and leaves of oriental Thuja (Platycladus orientalis L.) reveal their anti-inflammatory biomarkers. RSC Advances 2021; 11(40): 24624-35.
[http://dx.doi.org/10.1039/D1RA01681D] [PMID: 35481004]
[105]
Wang HK, Xia Y, Yang ZY, Morris NSL, Lee KH. Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents. Adv Exp Med Biol 1998; 439: 191-225.
[http://dx.doi.org/10.1007/978-1-4615-5335-9_15] [PMID: 9781305]