Anti-Inflammatory Phytochemicals for the Treatment of Diabetic Nephropathy

Article ID: e010623217526 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Diabetes is a metabolic disease characterized by hyperglycemia. Persistent hyperglycemia can cause Diabetic nephropathy (DN). It is a major microvascular complication that leads to chronic kidney disease (CKD) that progressively develops into end-stage renal disease (ESRD). It is the most debilitating condition that affects 15-25% of patients with type I diabetes and approximately 30-40% with type II diabetes worldwide.

Purpose: In this review, we aim at various inflammatory mediators and different inflammatory pathways involved in the progression of DN with special emphasis on phytoconstituents which gives protection against DN by acting on these mediators and pathways.

Methods: The literature was searched for the key words: inflammation, anti-inflamatory, phytoconstitutents/ phytochemicals, diabetic nephropathy, clinical and preclinical studies.

Results: The various epidemiological, preclinical, and clinical evidence showed a close relationship between inflammatory response and progression of DN, as such, there is no effective treatment for DN, therefore, there is an unmet need for novel therapeutic approaches to treat them. From ancient times, phytochemicals, also known as phytonutrients, are the bioactive nutrients found in plants and foods, which have proven potentially useful for human well-being. Phytochemicals have demonstrated a promising therapeutic role in nephropathy, principally through the regulation of oxidative stress and inflammation.

Graphical Abstract

[1]
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[2]
Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 2020; 10(1): 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[3]
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3(11): e442.
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[4]
Morran MP, Vonberg A, Khadra A, Pietropaolo M. Immunogenetics of type 1 diabetes mellitus. Mol Aspects Med 2015; 42: 42-60.
[http://dx.doi.org/10.1016/j.mam.2014.12.004] [PMID: 25579746]
[5]
Portha B, Lacraz G, Kergoat M, et al. The GK rat beta-cell: A prototype for the diseased human beta-cell in type 2 diabetes? Mol Cell Endocrinol 2009; 297(1-2): 73-85.
[http://dx.doi.org/10.1016/j.mce.2008.06.013] [PMID: 18640239]
[6]
Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414(6865): 782-7.
[http://dx.doi.org/10.1038/414782a] [PMID: 11742409]
[7]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[8]
Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003; 289(1): 76-9.
[http://dx.doi.org/10.1001/jama.289.1.76] [PMID: 12503980]
[9]
Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197153]
[10]
Lee KMC, Sum WMR. Prevalence of diabetic retinopathy in patients with recently diagnosed diabetes mellitus. Clin Exp Optom 2011; 94(4): 371-5.
[http://dx.doi.org/10.1111/j.1444-0938.2010.00574.x] [PMID: 21323731]
[11]
Long AN, Dagogo-Jack S. Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. J Clin Hypertens 2011; 13(4): 244-51.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00434.x] [PMID: 21466619]
[12]
Azushima K, Gurley SB, Coffman TM. Modelling diabetic nephropathy in mice. Nat Rev Nephrol 2018; 14(1): 48-56.
[http://dx.doi.org/10.1038/nrneph.2017.142] [PMID: 29062142]
[13]
Valencia WM, Florez H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ 2017; 356: i6505.
[http://dx.doi.org/10.1136/bmj.i6505] [PMID: 28096078]
[14]
John S. Complication in diabetic nephropathy. Diabetes Metab Syndr 2016; 10(4): 247-9.
[http://dx.doi.org/10.1016/j.dsx.2016.06.005] [PMID: 27389078]
[15]
Jerums G, Panagiotopoulos S, Premaratne E, MacIsaac RJ. Integrating albuminuria and GFR in the assessment of diabetic nephropathy. Nat Rev Nephrol 2009; 5(7): 397-406.
[http://dx.doi.org/10.1038/nrneph.2009.91] [PMID: 19556994]
[16]
Haneda M, Utsunomiya K, Koya D, et al. A new Classification of Diabetic Nephropathy 2014: a report from Joint Committee on Diabetic Nephropathy. J Diabetes Investig 2015; 6(2): 242-6.
[http://dx.doi.org/10.1111/jdi.12319] [PMID: 25802733]
[17]
Shafi S, Tabassum N, Ahmad F. Diabetic nephropathy and herbal medicines. Int J Phytopharm 2012; 3(1): 10-7.
[18]
Rao V, Rao LV, Tan SH, Candasamy M, Bhattamisra SK. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab Syndr 2019; 13(1): 754-62.
[http://dx.doi.org/10.1016/j.dsx.2018.11.054] [PMID: 30641802]
[19]
Sagoo MK, Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med 2018; 116: 50-63.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.12.040] [PMID: 29305106]
[20]
Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 2008; 4(8): 444-52.
[http://dx.doi.org/10.1038/ncpendmet0894] [PMID: 18607402]
[21]
Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci 2013; 124(3): 139-52.
[http://dx.doi.org/10.1042/CS20120198] [PMID: 23075333]
[22]
Hostetter TH. Hyperfiltration and glomerulosclerosis. Semin Nephrol 2003; 23(2): 194-9.
[http://dx.doi.org/10.1053/snep.2003.50017] [PMID: 12704579]
[23]
Huang W, Gallois Y, Bouby N, et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc Natl Acad Sci USA 2001; 98(23): 13330-4.
[http://dx.doi.org/10.1073/pnas.231476798] [PMID: 11687636]
[24]
Kanetsuna Y, Takahashi K, Nagata M, et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am J Pathol 2007; 170(5): 1473-84.
[http://dx.doi.org/10.2353/ajpath.2007.060481] [PMID: 17456755]
[25]
Zhang Y, Wang B, Guo F, Li Z, Qin G. Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy. Biomed Pharmacother 2018; 105: 766-72.
[http://dx.doi.org/10.1016/j.biopha.2018.06.036] [PMID: 29909344]
[26]
Thomson SC, Vallon V, Blantz RC. Kidney function in early diabetes: The tubular hypothesis of glomerular filtration. Am J Physiol-Ren Physiol 2004; 286(155-1): 8-15.
[27]
Aswar U, Gogawale V, Miniyar P, Patil Y. Beneficial effects of Stevioside on AGEs, blood glucose, lipid profile and renal status in streptozotocin-induced diabetic rats. J Appl Biomed 2019; 17(3): 190-7.
[http://dx.doi.org/10.32725/jab.2019.013] [PMID: 34907701]
[28]
Heilig CW, Deb DK, Abdul A, et al. GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. Am J Nephrol 2013; 38(1): 39-49.
[http://dx.doi.org/10.1159/000351989] [PMID: 23817135]
[29]
Srivastava SK, Ramana KV, Bhatnagar A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 2005; 26(3): 380-92.
[http://dx.doi.org/10.1210/er.2004-0028] [PMID: 15814847]
[30]
Sego S. Pathophysiology of diabetic nephropathy. Nephrol Nurs J 2007; 34(6): 631-3.
[PMID: 18203571]
[31]
Nagarajan RP, Chen F, Li W, et al. Repression of transforming-growth-factor-β-mediated transcription by nuclear factor κB. Biochem J 2000; 348(3): 591-6.
[http://dx.doi.org/10.1042/bj3480591] [PMID: 10839991]
[32]
Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol 2016; 12(1): 13-26.
[http://dx.doi.org/10.1038/nrneph.2015.175] [PMID: 26568190]
[33]
Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol 2020; 16(4): 206-22.
[http://dx.doi.org/10.1038/s41581-019-0234-4] [PMID: 31942046]
[34]
Samsu N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res Int 2021; 2021: 1-17.
[http://dx.doi.org/10.1155/2021/1497449] [PMID: 34307650]
[35]
Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and inflammation. World J Diabetes 2014; 5(3): 393-8.
[http://dx.doi.org/10.4239/wjd.v5.i3.393] [PMID: 24936261]
[36]
Ma J, Li YJ, Chen X, Kwan T, Chadban SJ, Wu H. Interleukin 17A promotes diabetic kidney injury. Sci Rep 2019; 9(1): 2264.
[http://dx.doi.org/10.1038/s41598-019-38811-4] [PMID: 30783187]
[37]
Feigerlová E, Battaglia-Hsu SF. IL-6 signaling in diabetic nephropathy: From pathophysiology to therapeutic perspectives. Cytokine Growth Factor Rev 2017; 37(37): 57-65.
[http://dx.doi.org/10.1016/j.cytogfr.2017.03.003] [PMID: 28363692]
[38]
Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci 2020; 21(11): 3798.
[http://dx.doi.org/10.3390/ijms21113798] [PMID: 32471207]
[39]
Sha J, Sui B, Su X, Meng Q, Zhang C. Alteration of oxidative stress and inflammatory cytokines induces apoptosis in diabetic nephropathy. Mol Med Rep 2017; 16(5): 7715-23.
[http://dx.doi.org/10.3892/mmr.2017.7522] [PMID: 28944839]
[40]
Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/948417] [PMID: 25785280]
[41]
Murakoshi M, Gohda T, Tanimoto M, Funabiki K, Horikoshi S, Tomino Y. Role of mindin in diabetic nephropathy. Exp Diabetes Res 2011; 2011: 1-6.
[http://dx.doi.org/10.1155/2011/486305] [PMID: 22235198]
[42]
Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19(3): 433-42.
[http://dx.doi.org/10.1681/ASN.2007091048] [PMID: 18256353]
[43]
Yaribeygi H, Atkin SL, Sahebkar A. Interleukin‐18 and diabetic nephropathy: A review. J Cell Physiol 2019; 234(5): 5674-82.
[http://dx.doi.org/10.1002/jcp.27427] [PMID: 30417374]
[44]
Miyauchi K, Takiyama Y, Honjyo J, Tateno M, Haneda M. Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-β1 enhanced IL-18 expression in human renal proximal tubular epithelial cells. Diabetes Res Clin Pract 2009; 83(2): 190-9.
[http://dx.doi.org/10.1016/j.diabres.2008.11.018] [PMID: 19110334]
[45]
Park CW, Kim JH, Lee JW, et al. High glucose-induced intercellular adhesion molecule-1 (ICAM-1) expression through an osmotic effect in rat mesangial cells is PKC-NF-ϰB-dependent. Diabetologia 2000; 43(12): 1544-53.
[http://dx.doi.org/10.1007/s001250051567] [PMID: 11151765]
[46]
Bertani T, Abbate M, Zoja C, et al. Tumor necrosis factor induces glomerular damage in the rabbit. Am J Pathol 1989; 134(2): 419-30.
[PMID: 2916653]
[47]
Wójciak-Stothard B, Entwistle A, Garg R, Ridley AJ. Regulation of TNF-α-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 1998; 176(1): 150-65.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199807)176:1<150:AID-JCP17>3.0.CO;2-B] [PMID: 9618155]
[48]
Savic V, Stefanovic V, Ardaillou N, Ardaillou R. Induction of ecto-5′-nucleotidase of rat cultured mesangial cells by interleukin-1 beta and tumour necrosis factor-alpha. Immunology 1990; 70(3): 321-6.
[PMID: 2165999]
[49]
Koike N, Takamura T, Kaneko S. Induction of reactive oxygen species from isolated rat glomeruli by protein kinase C activation and TNF-α stimulation, and effects of a phosphodiesterase inhibitor. Life Sci 2007; 80(18): 1721-8.
[http://dx.doi.org/10.1016/j.lfs.2007.02.001] [PMID: 17346751]
[50]
Cortvrindt C, Speeckaert R, Moerman A, Delanghe JR, Speeckaert MM. The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology 2017; 49(3): 247-58.
[http://dx.doi.org/10.1016/j.pathol.2017.01.003] [PMID: 28291548]
[51]
Van Kooten C, Boonstra JG, Paape ME, et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J Am Soc Nephrol 1998; 9(8): 1526-34.
[http://dx.doi.org/10.1681/ASN.V981526] [PMID: 9697677]
[52]
Dudas PL, Sague SL, Elloso MM, Farrell FX. Proinflammatory/profibrotic effects of interleukin-17A on human proximal tubule epithelium. Nephron, Exp Nephrol 2011; 117(4): e114-23.
[http://dx.doi.org/10.1159/000320177] [PMID: 20924205]
[53]
Orejudo M, Rodrigues-Diez RR, Rodrigues-Diez R, et al. Interleukin 17A participates in renal inflammation associated to experimental and human hypertension. Front Pharmacol 2019; 10: 1015.
[http://dx.doi.org/10.3389/fphar.2019.01015] [PMID: 31572188]
[54]
Xu J, Long Y, Ni L, et al. Anticancer effect of berberine based on experimental animal models of various cancers: A systematic review and meta-analysis. BMC Cancer 2019; 19(1): 589.
[http://dx.doi.org/10.1186/s12885-019-5791-1] [PMID: 31208348]
[55]
Li J, Bao J, Zeng J, Yan A, Zhao C, Shu Q. Iguratimod: A valuable remedy from the Asia Pacific region for ameliorating autoimmune diseases and protecting bone physiology. Bone Res 2019; 7(1): 27.
[http://dx.doi.org/10.1038/s41413-019-0067-6]
[56]
Deng Y, Zhang X, Shi Q, Chen Y, Qiu X, Chen B. Anti-hyperglycemic effects and mechanism of traditional Chinese medicine Huanglian Wan in streptozocin-induced diabetic rats. J Ethnopharmacol 2012; 144(2): 425-32.
[http://dx.doi.org/10.1016/j.jep.2012.09.039] [PMID: 23036812]
[57]
Qing Y, Dong X, Hongli L, Yanhui L. Berberine promoted myocardial protection of postoperative patients through regulating myocardial autophagy. Biomed Pharmacother 2018; 105: 1050-3.
[http://dx.doi.org/10.1016/j.biopha.2018.06.088] [PMID: 30021340]
[58]
Singh AK, Singh SK, Nandi MK, et al. Berberine: A plant-derived alkaloid with therapeutic potential to combat Alzheimer’s disease. Cent Nerv Syst Agents Med Chem 2019; 19(3): 154-70.
[http://dx.doi.org/10.2174/1871524919666190820160053] [PMID: 31429696]
[59]
Zhu L, Zhang D, Zhu H, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe−/− mice. Atherosclerosis 2018; 268: 117-26.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.11.023] [PMID: 29202334]
[60]
Ehteshamfar SM, Akhbari M, Afshari JT, et al. Anti‐inflammatory and immune‐modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J Cell Mol Med 2020; 24(23): 13573-88.
[http://dx.doi.org/10.1111/jcmm.16049] [PMID: 33135395]
[61]
Chen Y, Wang Y, Zhang J, Sun C, Lopez A. Berberine improves glucose homeostasis in streptozotocin-induced diabetic rats in association with multiple factors of insulin resistance. ISRN Endocrinol 2011; 2011: 1-8.
[http://dx.doi.org/10.5402/2011/519371] [PMID: 22363882]
[62]
Xie X, Chang X, Chen L, et al. Berberine ameliorates experimental diabetes-induced renal inflammation and fibronectin by inhibiting the activation of RhoA/ROCK signaling. Mol Cell Endocrinol 2013; 381(1-2): 56-65.
[http://dx.doi.org/10.1016/j.mce.2013.07.019] [PMID: 23896433]
[63]
Avila-Carrasco L, García-Mayorga EA, Díaz-Avila DL, Garza-Veloz I, Martinez-Fierro ML, González-Mateo GT. Potential therapeutic effects of natural plant compounds in kidney disease. Molecules 2021; 26(20): 6096.
[http://dx.doi.org/10.3390/molecules26206096] [PMID: 34684678]
[64]
Kollár P, Hotolová H. Biological effects of resveratrol and other constituents of wine. Ceska Slov Farm 2003; 52(6): 272-81.
[PMID: 14661366]
[65]
Xu F, Wang Y, Cui W, et al. Resveratrol prevention of diabetic nephropathy is associated with the suppression of renal inflammation and mesangial cell proliferation: Possible roles of Akt/NF- κ B pathway. Int J Endocrinol 2014; 2014: 1-9.
[http://dx.doi.org/10.1155/2014/289327] [PMID: 24672545]
[66]
Harikumar KB, Aggarwal BB. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle 2008; 7(8): 1020-35.
[http://dx.doi.org/10.4161/cc.7.8.5740] [PMID: 18414053]
[67]
Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2–Keap1 signaling. Biochim Biophys Acta Mol Basis Dis 2011; 1812(7): 719-31.
[http://dx.doi.org/10.1016/j.bbadis.2011.03.008] [PMID: 21439372]
[68]
Guo R, Liu B, Wang K, Zhou S, Li W, Xu Y. Resveratrol ameliorates diabetic vascular inflammation and macrophage infiltration in db/db mice by inhibiting the NF-κB pathway. Diab Vasc Dis Res 2014; 11(2): 92-102.
[http://dx.doi.org/10.1177/1479164113520332] [PMID: 24464099]
[69]
Sattarinezhad A, Roozbeh J, Shirazi Yeganeh B, Omrani GR, Shams M. Resveratrol reduces albuminuria in diabetic nephropathy: A randomized double-blind placebo-controlled clinical trial. Diabetes Metab 2019; 45(1): 53-9.
[http://dx.doi.org/10.1016/j.diabet.2018.05.010] [PMID: 29983230]
[70]
Shukla S, Gupta S. Apigenin: A promising molecule for cancer prevention. Pharm Res 2010; 27(6): 962-78.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[71]
Hou Y, Zhang Y, Lin S, et al. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis. Am J Transl Res 2021; 13(4): 2006-20.
[PMID: 34017372]
[72]
Malik S, Suchal K, Khan SI, et al. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Renal Physiol 2017; 313(2): F414-22.
[http://dx.doi.org/10.1152/ajprenal.00393.2016] [PMID: 28566504]
[73]
Ceci C, Lacal P, Tentori L, De Martino M, Miano R, Graziani G. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 2018; 10(11): 1756.
[http://dx.doi.org/10.3390/nu10111756] [PMID: 30441769]
[74]
Baradaran Rahimi V, Ghadiri M, Ramezani M, Askari VR. Antiinflammatory and anti‐cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies. Phytother Res 2020; 34(4): 685-720.
[http://dx.doi.org/10.1002/ptr.6565] [PMID: 31908068]
[75]
Zhou B, Li Q, Wang J, Chen P, Jiang S. Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling. Food Chem Toxicol 2019; 123: 16-27.
[http://dx.doi.org/10.1016/j.fct.2018.10.036] [PMID: 30342113]
[76]
Ahad A, Ganai AA, Mujeeb M, Siddiqui WA. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy. Chem Biol Interact 2014; 219: 64-75.
[http://dx.doi.org/10.1016/j.cbi.2014.05.011] [PMID: 24877639]
[77]
Aggarwal BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 2010; 30(1): 173-99.
[http://dx.doi.org/10.1146/annurev.nutr.012809.104755] [PMID: 20420526]
[78]
Pan Y, Wang Y, Cai L, et al. Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol 2012; 166(3): 1169-82.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01854.x] [PMID: 22242942]
[79]
Pan Y, Zhu G, Wang Y, et al. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart. J Nutr Biochem 2013; 24(1): 146-55.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.012] [PMID: 22819547]
[80]
Soetikno V, Sari FR, Veeraveedu PT, et al. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr Metab 2011; 8(1): 35.
[http://dx.doi.org/10.1186/1743-7075-8-35] [PMID: 21663638]
[81]
Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A. Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 2018; 136: 181-93.
[http://dx.doi.org/10.1016/j.phrs.2018.09.012] [PMID: 30219581]
[82]
Ashrafizadeh M, Tavakol S, Ahmadi Z, Roomiani S, Mohammadinejad R, Samarghandian S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res 2020; 34(5): 911-23.
[http://dx.doi.org/10.1002/ptr.6577] [PMID: 31829475]
[83]
Hu Q, Qu C, Xiao X, et al. Flavonoids on diabetic nephropathy: Advances and therapeutic opportunities. Chin Med 2021; 16(1): 74.
[http://dx.doi.org/10.1186/s13020-021-00485-4] [PMID: 34364389]
[84]
Sharma D, Gondaliya P, Tiwari V, Kalia K. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling. Biomed Pharmacother 2019; 109: 1610-9.
[http://dx.doi.org/10.1016/j.biopha.2018.10.195] [PMID: 30551415]
[85]
Huang T, Liu Y, Zhang C. Pharmacokinetics and bioavailability enhancement of baicalin: A review. Eur J Drug Metab Pharmacokinet 2019; 44(2): 159-68.
[http://dx.doi.org/10.1007/s13318-018-0509-3] [PMID: 30209794]
[86]
Hu Q, Zhang W, Wu Z, et al. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects. Pharmacol Res 2021; 165: 105444.
[http://dx.doi.org/10.1016/j.phrs.2021.105444] [PMID: 33493657]
[87]
Zhang S, Xu L, Liang R, Yang C, Wang P. Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells. J Physiol Biochem 2020; 76(3): 407-16.
[http://dx.doi.org/10.1007/s13105-020-00747-z] [PMID: 32500512]
[88]
Zheng X, Nie Q, Feng J, et al. Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin. BMC Nephrol 2020; 21(1): 174.
[http://dx.doi.org/10.1186/s12882-020-01833-6] [PMID: 32398108]
[89]
Yang M, Kan L, Wu L, Zhu Y, Wang Q. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism. Exp Ther Med 2019; 17(3): 2071-6.
[http://dx.doi.org/10.3892/etm.2019.7181]
[90]
Zaidun NH, Thent ZC, Latiff AA. Combating oxidative stress disorders with citrus flavonoid. Naringenin Life Sci 2018; 208: 111-22.
[http://dx.doi.org/10.1016/j.lfs.2018.07.017] [PMID: 30021118]
[91]
Zeng W, Jin L, Zhang F, Zhang C, Liang W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol Res 2018; 135: 122-6.
[http://dx.doi.org/10.1016/j.phrs.2018.08.002] [PMID: 30081177]
[92]
Tsai SJ, Huang CS, Mong MC, Kam WY, Huang HY, Yin MC. Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice. J Agric Food Chem 2012; 60(1): 514-21.
[http://dx.doi.org/10.1021/jf203259h] [PMID: 22117528]
[93]
Chen F, Wei G, Xu J, Ma X, Wang Q. Naringin ameliorates the high glucose-induced rat mesangial cell inflammatory reaction by modulating the NLRP3 Inflammasome. BMC Complement Altern Med 2018; 18(1): 192.
[http://dx.doi.org/10.1186/s12906-018-2257-y] [PMID: 29929501]
[94]
Roy S, Ahmed F, Banerjee S, Saha U. Naringenin ameliorates streptozotocin-induced diabetic rat renal impairment by downregulation of TGF-β1 and IL-1 via modulation of oxidative stress correlates with decreased apoptotic events. Pharm Biol 2016; 54(9): 1616-27.
[http://dx.doi.org/10.3109/13880209.2015.1110599] [PMID: 26928632]
[95]
Yan N, Wen L, Peng R, et al. Naringenin ameliorated kidney injury through Let-7a/TGFBR1 signaling in diabetic nephropathy. J Diabetes Res 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/8738760] [PMID: 27446963]
[96]
Larson AJ, Symons JD, Jalili T. Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms. Adv Nutr 2012; 3(1): 39-46.
[http://dx.doi.org/10.3945/an.111.001271] [PMID: 22332099]
[97]
Stewart LK, Soileau JL, Ribnicky D, et al. Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6J mice fed a high-fat diet. Metabolism 2008; 57(7) (Suppl. 1): S39-46.
[http://dx.doi.org/10.1016/j.metabol.2008.03.003] [PMID: 18555853]
[98]
Wang C, Pan Y, Zhang QY, Wang FM, Kong LD. Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS One 2012; 7(6): e38285.
[http://dx.doi.org/10.1371/journal.pone.0038285] [PMID: 22701621]
[99]
Chen P, Shi Q, Xu X, Wang Y, Chen W, Wang H. Quercetin suppresses NF-κB and MCP-1 expression in a high glucose-induced human mesangial cell proliferation model. Int J Mol Med 2012; 30(1): 119-25.
[PMID: 22469745]
[100]
Lai PB, Zhang L, Yang LY. Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-β1 and connective tissue growth factor in streptozotocin-induced diabetic rats. Ren Fail 2012; 34(1): 83-7.
[http://dx.doi.org/10.3109/0886022X.2011.623564] [PMID: 22011322]
[101]
Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 2019; 47: 446-56.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.069] [PMID: 31542391]
[102]
Elmarakby AA, Ibrahim AS, Faulkner J, Mozaffari MS, Liou GI, Abdelsayed R. Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul Pharmacol 2011; 55(5-6): 149-56.
[http://dx.doi.org/10.1016/j.vph.2011.07.007] [PMID: 21807121]
[103]
Mukund V, Mukund D, Sharma V, Mannarapu M, Alam A. Genistein: Its role in metabolic diseases and cancer. Crit Rev Oncol Hematol 2017; 119: 13-22.
[http://dx.doi.org/10.1016/j.critrevonc.2017.09.004] [PMID: 29065980]
[104]
Kim MJ, Lim Y. Protective effect of short-term genistein supplementation on the early stage in diabetes-induced renal damage. Mediators Inflamm 2013; 2013: 1-14.
[http://dx.doi.org/10.1155/2013/510212] [PMID: 23737649]
[105]
Wang Y, Li Y, Zhang T, Chi Y, Liu M, Liu Y. Genistein and myd88 activate autophagy in high glucose-induced renal podocytes in vitro. Med Sci Monit 2018; 24: 4823-31.
[http://dx.doi.org/10.12659/MSM.910868] [PMID: 29999001]
[106]
Rehman K, Ali MB, Akash MSH. Genistein enhances the secretion of glucagon-like peptide-1 (GLP-1) via downregulation of inflammatory responses. Biomed Pharmacother 2019; 112: 108670.
[http://dx.doi.org/10.1016/j.biopha.2019.108670] [PMID: 30784939]
[107]
Abbasi B, Mirlohi M, Daniali M, Ghiasvand R. Effects of probiotic soymilk on lipid panel in type 2 diabetic patients with nephropathy: A double-blind randomized clinical trial. Prog Nutr 2018; 20: 70-8.
[108]
Choi EJ, Ahn WS. Neuroprotective effects of chronic hesperetin administration in mice. Arch Pharm Res 2008; 31(11): 1457-62.
[http://dx.doi.org/10.1007/s12272-001-2130-1] [PMID: 19023542]
[109]
Iranshahi M, Rezaee R, Parhiz H, Roohbakhsh A, Soltani F. Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin. Life Sci 2015; 137: 125-32.
[http://dx.doi.org/10.1016/j.lfs.2015.07.014] [PMID: 26188593]
[110]
Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complications 2012; 26(6): 483-90.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.06.001] [PMID: 22809898]
[111]
Jayaraman R, Subramani SS, Abdullah SH, Udaiyar M. Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlidemic in streptozotocin-induced diabetic rats. Biomed Pharmacother 2018; 97: 98-106.
[http://dx.doi.org/10.1016/j.biopha.2017.10.102] [PMID: 29080465]
[112]
Chen YJ, Kong L, Tang ZZ, et al. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed Pharmacother 2019; 111(209): 1166-75.
[http://dx.doi.org/10.1016/j.biopha.2019.01.030] [PMID: 30841430]
[113]
Lv J, Zhou D, Wang Y, et al. Effects of luteolin on treatment of psoriasis by repressing HSP90. Int Immunopharmacol 2020; 79: 106070.
[http://dx.doi.org/10.1016/j.intimp.2019.106070] [PMID: 31918062]
[114]
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol 2018; 225: 342-58.
[http://dx.doi.org/10.1016/j.jep.2018.05.019] [PMID: 29801717]
[115]
Xiong C, Wu Q, Fang M, Li H, Chen B, Chi T. Protective effects of luteolin on nephrotoxicity induced by long-term hyperglycaemia in rats. J Int Med Res 2020; 48(4)
[http://dx.doi.org/10.1177/0300060520903642] [PMID: 32242458]
[116]
Zhang M, He L, Liu J, Zhou L. Luteolin attenuates diabetic nephropathy through suppressing inflammatory response and oxidative stress by inhibiting STAT3 pathway. Exp Clin Endocrinol Diabetes 2021; 129(10): 729-39.
[http://dx.doi.org/10.1055/a-0998-7985] [PMID: 31896157]
[117]
Yu Q, Zhang M, Qian L, Wen D, Wu G. Luteolin attenuates high glucose-induced podocyte injury via suppressing NLRP3 inflammasome pathway. Life Sci 2019; 225(225): 1-7.
[http://dx.doi.org/10.1016/j.lfs.2019.03.073] [PMID: 30935950]
[118]
Fu J, Li Y, Wang L, Gao B, Zhang N, Ji Q. Paeoniflorin prevents diabetic nephropathy in rats. Comp Med 2009; 59(6): 557-66.
[PMID: 20034431]
[119]
Zhang T, Zhu Q, Shao Y, Wang K, Wu Y. Paeoniflorin prevents TLR2/4-mediated inflammation in type 2 diabetic nephropathy. Biosci Trends 2017; 11(3): 308-18.
[http://dx.doi.org/10.5582/bst.2017.01104] [PMID: 28626209]
[120]
Chen Y, Chen L, Yang T. Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing TGF-β/Smad and JAK2/STAT3/SOCS1 pathway. Life Sci 2021; 271: 119197.
[http://dx.doi.org/10.1016/j.lfs.2021.119197] [PMID: 33577847]
[121]
Xu H, Wang X, Cheng Y, et al. Ursolic acid improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-induced rats. Biomed Pharmacother 2018; 105: 915-21.
[http://dx.doi.org/10.1016/j.biopha.2018.06.055] [PMID: 30021385]
[122]
Garud MS, Kulkarni YA. Gallic acid attenuates type I diabetic nephropathy in rats. Chem Biol Interact 2018; 282: 69-76.
[http://dx.doi.org/10.1016/j.cbi.2018.01.010] [PMID: 29331653]
[123]
Xu X, Zheng N, Chen Z, Huang W, Liang T, Kuang H. Puerarin, isolated from Pueraria lobata (Willd.), protects against diabetic nephropathy by attenuating oxidative stress. Gene 2016; 591(2): 411-6.
[http://dx.doi.org/10.1016/j.gene.2016.06.032] [PMID: 27317894]
[124]
Sathibabu Uddandrao VV, Brahmanaidu P, Ravindarnaik R, Suresh P, Vadivukkarasi S, Saravanan G. Restorative potentiality of S-allylcysteine against diabetic nephropathy through attenuation of oxidative stress and inflammation in streptozotocin–nicotinamide-induced diabetic rats. Eur J Nutr 2019; 58(6): 2425-37.
[http://dx.doi.org/10.1007/s00394-018-1795-x] [PMID: 30062492]
[125]
Maheshwari R, Balaraman R, Sen AK, Shukla D, Seth A. Effect of concomitant administration of coenzyme Q10 with sitagliptin on experimentally induced diabetic nephropathy in rats. Ren Fail 2017; 39(1): 130-9.
[http://dx.doi.org/10.1080/0886022X.2016.1254659] [PMID: 27841100]
[126]
Qi M, Wang X, Xu H, Yang Z, Cheng Y, Zhou B. Protective effect of ferulic acid on STZ-induced diabetic nephropathy in rats. Food Funct 2020; 11(4): 3706-18.
[http://dx.doi.org/10.1039/C9FO02398D] [PMID: 32307498]
[127]
Lu M, Yin N, Liu W, Cui X, Chen S, Wang E. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. BioMed Res Int 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/1516985] [PMID: 28194406]
[128]
Zhu Q, Qi X, Wu Y, Wang K. Clinical study of total glucosides of paeony for the treatment of diabetic kidney disease in patients with diabetes mellitus. Int Urol Nephrol 2016; 48(11): 1873-80.
[http://dx.doi.org/10.1007/s11255-016-1345-5] [PMID: 27342654]
[129]
Fallahzadeh MK, Dormanesh B, Sagheb MM, et al. Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: A randomized, double-blind, placebo-controlled trial. Am J Kidney Dis 2012; 60(6): 896-903.
[http://dx.doi.org/10.1053/j.ajkd.2012.06.005] [PMID: 22770926]
[130]
Borges CM, Papadimitriou A, Duarte DA, Lopes de Faria JM, Lopes de Faria JB. The use of green tea polyphenols for treating residual albuminuria in diabetic nephropathy: A double-blind randomised clinical trial. Sci Rep 2016; 6(1): 28282.
[http://dx.doi.org/10.1038/srep28282] [PMID: 27320846]
[131]
Ghosh B. Usha, Agrawal A, Dubey GP, Singh RG, Rajak M. Comparative evaluation of fosinopril and herbal drug Dioscorea bulbifera in patients of diabetic nephropathy. Saudi J Kidney Dis Transpl 2013; 24(4): 737-42.
[http://dx.doi.org/10.4103/1319-2442.113866] [PMID: 23816723]