Current Trends and Prospective Role of Flavonoids and Flavones as Anticancer Agents: A Review

Page: [712 - 722] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Among the leading causes of death, cancer is second to heart disease as a group of diseases. It has been found that several natural substances, including flavonoids, can treat cancer in addition to several types of chemotherapy.

Objective: Flavonoids are naturally occurring polyphenolic compounds with no or minimal toxicity, and have been utilized by people since ancient times. They produce several special therapeutic effects, such as anti-inflammatory, immune response modulating, and antioxidant effects, thereby supporting normal cellular functions. Flavonoids can be classified into six major subtypes or groups based on the degree of oxidation, chemical structure, and unsaturation in the linking chain. Aside from flavonoids and flavanones, flavonols, flavonols, flavones, and anthocyanids also fall into these categories.

Methods: In order to find studies on flavonoids as anticancer agents, we searched Science Direct, Google Scholar, PubMed, Wiley Online Library, Springer, and Medline databases.

Results: The enhanced generation of reactive oxygen species (ROS) in the electron transport chain due to oxidative stress leads to inflammation, the development of many degenerative diseases, cancer, etc. Oxidative stress can be relieved by flavonoids because they regulate ROS homeostasis (scavenging ROS), trigger apoptosis, and suppress prooxidant enzymes during oxidative stress.

Conclusion: Here we review the structure and classification of flavonoids and their mechanisms of action as anticancer agents as well as the challenges involved in developing flavonoids to fight cancer.

Graphical Abstract

[1]
Cancer incidence for common cancers | Cancer Research UK [Internet]. [cited 2023 Feb 13]. Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence/common-cancers-compared
[2]
Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol 2016; 7(1): 54-86.
[http://dx.doi.org/10.5306/wjco.v7.i1.54] [PMID: 26862491]
[3]
Jain S, Dwivedi J, Jain P, Satpathy S, Patra A. Medicinal plants for treatment of cancer: A brief overview. Pharmacogn J 2016; 8(2): 87-102.
[http://dx.doi.org/10.5530/pj.2016.2.1]
[4]
Hussein AR, Amira A. Plants secondary metabolites: The Key drivers of the pharmacological actions of medicinal plants. In: Herbal medicine intechopen. 2018.
[http://dx.doi.org/10.5772/intechopen.76139]
[5]
Ullah A, Munir S, Badshah SL, et al. Important flavonoids and their role as a therapeutic agent. Molecules 2020; 25(22): 5243.
[http://dx.doi.org/10.3390/molecules25225243] [PMID: 33187049]
[6]
Neagu M, Constantin C, Popescu ID, et al. Inflammation and metabolism in cancer cell—mitochondria key player. Front Oncol 2019; 9: 348.
[http://dx.doi.org/10.3389/fonc.2019.00348] [PMID: 31139559]
[7]
Amawi H, Ashby CR Jr, Tiwari AK. Cancer chemoprevention through dietary flavonoids: What’s limiting? Chin J Cancer 2017; 36(1): 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4]
[8]
Vedavanam K, Srijayanta S, O’Reilly J, Raman A, Wiseman H. Antioxidant action and potential antidiabetic properties of an isoflavonoid-containing soyabean phytochemical extract (SPE). Phytother Res 1999; 13(7): 601-8.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199911)13:7<601:AID-PTR550>3.0.CO;2-O] [PMID: 10548755]
[9]
Kaplan NM, Palmer BF, Denke MA. Nutritional and health benefits of beer. Am J Med Sci 2000; 320(5): 320-6.
[http://dx.doi.org/10.1097/00000441-200011000-00004] [PMID: 11093684]
[10]
Miyake Y, Yamamoto K, Tsujihara N, Osawa T. Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids 1998; 33(7): 689-95.
[http://dx.doi.org/10.1007/s11745-998-0258-y] [PMID: 9688172]
[11]
Giuffre AM, Zappia C, Capocasale M. Physicochemical stability of blood orange juice during frozen storage. Int J Food Prop 2017; 20(2): 1930-43.
[12]
Vanamala J, Reddivari L, Yoo KS, Pike LM, Patil BS. Variation in the content of bioactive flavonoids in different brands of orange and grapefruit juices. J Food Compos Anal 2006; 19(2-3): 157-66.
[http://dx.doi.org/10.1016/j.jfca.2005.06.002]
[13]
Giuffre AM. HPLC- DAD detection of changes in phenol content of red berry skins during grape ripening. Eur Food Res Tech 2013; 237(4): 555-64.
[http://dx.doi.org/10.1007/s00217-013-2033-7]
[14]
Giuffrè A. Bergamot (Citrus bergamia): The effects of cultivar and harvest date on functional properties of juice and cloudy juice. Antioxidants 2019; 8(7): 221.
[http://dx.doi.org/10.3390/antiox8070221] [PMID: 31336933]
[15]
Slimestad R, Fossen T, Verheul MJ. The flavonoids of tomatoes. J Agric Food Chem 2008; 56(7): 2436-41.
[http://dx.doi.org/10.1021/jf073434n] [PMID: 18318499]
[16]
Kelley D, Adkins Y, Laugero K. A Review of the health benefits of cherries. Nutrients 2018; 10(3): 368.
[http://dx.doi.org/10.3390/nu10030368] [PMID: 29562604]
[17]
Kofink M, Papagiannopoulos M, Galensa R. (-)-Catechin in cocoa and chocolate: occurrence and analysis of an atypical flavan-3-ol enantiomer. Molecules 2007; 12(7): 1274-88.
[http://dx.doi.org/10.3390/12071274] [PMID: 17909484]
[18]
Busch S. What Is a Flavonoid in Chocolate? [Internet]. [cited 2023 Feb 13]. Available from: https://healthyeating.sfgate.com/flavonoid-chocolate-8424.html
[19]
Hannum SM. Potential impact of strawberries on human health: A review of the science. Crit Rev Food Sci Nutr 2004; 44(1): 1-17.
[http://dx.doi.org/10.1080/10408690490263756] [PMID: 15077879]
[20]
Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr J 2004; 3(1): 5.
[http://dx.doi.org/10.1186/1475-2891-3-5] [PMID: 15140261]
[21]
Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: A literature review. Chin Med 2010; 5(1): 13.
[http://dx.doi.org/10.1186/1749-8546-5-13] [PMID: 20370896]
[22]
Rasheed Z. Molecular evidences of health benefits of drinking black tea. Int J Health Sci 2019; 13(3): 1-3.
[PMID: 31123432]
[23]
Ganesan K, Xu B. Polyphenol-rich dry common beans (Phaseolus vulgaris) and their health benefits. Int J Mol Sci 2017; 18(11): 2331.
[http://dx.doi.org/10.3390/ijms18112331] [PMID: 29113066]
[24]
Olsen H, Aaby K, Iren G, Borge A. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly Kale (Brassica Oleracea) by HPLC-DAD-ESI-MSn. J Agric Food Chem 2009; 57(7): 2816-25.
[http://dx.doi.org/10.1021/jf803693t] [PMID: 19253943]
[25]
Hwang ES. Influence of cooking methods on bioactive compound content and antioxidant activity of Brussels sprouts. Prev Nutr Food Sci 2017; 22(4): 353-8.
[http://dx.doi.org/10.3746/pnf.2017.22.4.353] [PMID: 29333389]
[26]
Fattorusso E, Lanzotti V, Scafati OT, Cicala C. The flavonoids of leek. Allium Porrum 2001; 57(4): 565-9.
[27]
Slimestad R, Fossen T, Vågen IM. Onions: A source of unique dietary flavonoids. J Agric Food Chem 2007; 55(25): 10067-80.
[http://dx.doi.org/10.1021/jf0712503] [PMID: 17997520]
[28]
Lin LZ, Lu S, Harnly JM. Detection and quantification of glycosylated flavonoid malonates in celery, Chinese celery, and celery seed by LC-DAD-ESI/MS. J Agric Food Chem 2007; 55(4): 1321-6.
[http://dx.doi.org/10.1021/jf0624796] [PMID: 17253711]
[29]
LEE Y, HOWARD LR, VILLALÓN B. Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) Cultivars. J Food Sci 1995; 60(3): 473-6. Available from https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2621.1995.tb09806.x
[30]
Mara De Menezes Epifanio N, Rykiel Iglesias Cavalcanti L, Falcão Dos Santos K, Soares Coutinho Duarte P, Kachlicki P, Ozarowski M, et al. Chemical characterization and in vivo antioxidant activity of parsley (Petroselinum crispum) aqueous extract. Food Funct 2020; 11(6): 5346-56. Available from: https://pubmed.ncbi.nlm.nih.gov/32462155/
[31]
Wu X, Zhao Y, Haytowitz DB, Chen P, Pehrsson PR. Effects of domestic cooking on flavonoids in broccoli and calculation of retention factors. Heliyon 2019; 5(3): e01310.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01310] [PMID: 30899833]
[32]
Wu X, Gu L, Prior RL, McKay S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 2004; 52(26): 7846-56.
[http://dx.doi.org/10.1021/jf0486850] [PMID: 15612766]
[33]
Määttä-Riihinen KR, Kamal-Eldin A, Törrönen AR. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J Agric Food Chem 2004; 52(20): 6178-87.
[http://dx.doi.org/10.1021/jf049450r] [PMID: 15453684]
[34]
Mikkonen TP, Määttä KR, Hukkanen AT, et al. Flavonol content varies among black currant cultivars. J Agric Food Chem 2001; 49(7): 3274-7.
[http://dx.doi.org/10.1021/jf0010228] [PMID: 11453762]
[35]
Abotaleb M, Samuel S, Varghese E, et al. Flavonoids in cancer and apoptosis. Cancers 2018; 11(1): 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[36]
Durazzo A, Lucarini M, Souto EB, et al. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother Res 2019; 33(9): 2221-43.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[37]
Rosen T. Green tea catechins: Biologic properties, proposed mechanisms of action, and clinical implications. J Drugs Dermatol 2012; 11(11): e55-60.
[PMID: 23135094]
[38]
Anandh Babu P, Liu D. Green tea catechins and cardiovascular health: An update. Curr Med Chem 2008; 15(18): 1840-50.
[http://dx.doi.org/10.2174/092986708785132979] [PMID: 18691042]
[39]
Devi KP, Rajavel T, Nabavi SF, et al. Hesperidin: A promising anticancer agent from nature. Ind Crops Prod 2015; 76: 582-9.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.051]
[40]
Martinez-Perez C, Ward C, Cook G, et al. Novel flavonoids as anti-cancer agents: Mechanisms of action and promise for their potential application in breast cancer. Biochem Soc Trans 2014; 42(4): 1017-23.
[http://dx.doi.org/10.1042/BST20140073] [PMID: 25109996]
[41]
Kopustinskiene D, Jakstas V. Flavonoids as anticancer agents. Nutrients 2020; (12): 457.
[42]
Batra P, Sharma AK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 2013; 3(6): 439.
[43]
Gorlach S, Fichna J, Lewandowska U. Polyphenols as mitochondria-targeted anticancer drugs. Cancer Lett 2015; 366(2): 141-9.
[http://dx.doi.org/10.1016/j.canlet.2015.07.004] [PMID: 26185003]
[44]
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009; 417(1): 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[45]
Hadi SM, Asad SF, Singh S, Ahmad A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 2000; 50(3): 167-71.
[http://dx.doi.org/10.1080/152165400300001471] [PMID: 11142343]
[46]
McArthur K, Kile BT. Apoptotic caspases: Multiple or mistaken identities? Trends Cell Biol 2018; 28(6): 475-93.
[http://dx.doi.org/10.1016/j.tcb.2018.02.003] [PMID: 29551258]
[47]
Gupta SC, Kunnumakkara AB, Aggarwal S, Aggarwal BB. Inflammation, a double-edge sword for cancer and other age-related diseases. Front Immunol 2018; 9: 2160.
[http://dx.doi.org/10.3389/fimmu.2018.02160] [PMID: 30319623]
[48]
Sambantham S, Radha M, Paramasivam A, et al. Molecular mechanism underlying hesperetin-induced apoptosis by in silico analysis and in prostate cancer PC-3 cells. Asian Pac J Cancer Prev 2013; 14(7): 4347-52.
[http://dx.doi.org/10.7314/APJCP.2013.14.7.4347] [PMID: 23992001]
[49]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[50]
Skibola CF, Smith MT. Potential health impacts of excessive flavonoid intake. Free Radic Biol Med 2000; 29(3-4): 375-83.
[http://dx.doi.org/10.1016/S0891-5849(00)00304-X] [PMID: 11035267]
[51]
Jin S, Zhang QY, Kang XM, Wang JX, Zhao WH. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann Oncol 2010; 21(2): 263-8.
[http://dx.doi.org/10.1093/annonc/mdp499] [PMID: 19889614]
[52]
Park HJ, Jeon YK, You DH, Nam MJ. Daidzein causes cytochrome c-mediated apoptosis via the Bcl-2 family in human hepatic cancer cells. Food Chem Toxicol 2013; 60: 542-9.
[http://dx.doi.org/10.1016/j.fct.2013.08.022] [PMID: 23959101]
[53]
Kaushik S, Shyam H, Agarwal S, et al. Genistein potentiates Centchroman induced antineoplasticity in breast cancer via PI3K/Akt deactivation and ROS dependent induction of apoptosis. Life Sci 2019; 239: 117073.
[http://dx.doi.org/10.1016/j.lfs.2019.117073] [PMID: 31751581]
[54]
Choi EJ, Jung JY, Kim GH. Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis. Exp Ther Med 2014; 8(2): 454-8.
[http://dx.doi.org/10.3892/etm.2014.1771] [PMID: 25009600]
[55]
Pandey P, Sayyed U, Tiwari RK, Siddiqui MH, Pathak N, Bajpai P. Hesperidin induces ROS-mediated apoptosis along with cell cycle arrest at G2/M phase in human gall bladder carcinoma. Nutr Cancer 2019; 71(4): 676-87.
[http://dx.doi.org/10.1080/01635581.2018.1508732] [PMID: 30265812]
[56]
Wu D, Zhang J, Wang J, Li J, Liao F, Dong W. Hesperetin induces apoptosis of esophageal cancer cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species. Tumour Biol 2016; 37(3): 3451-9.
[http://dx.doi.org/10.1007/s13277-015-4176-6] [PMID: 26449828]
[57]
Lim W, Park S, Bazer FW, Song G. Naringenin-induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem 2017; 118(5): 1118-31.
[http://dx.doi.org/10.1002/jcb.25729] [PMID: 27606834]
[58]
Shirakami Y, Sakai H, Kochi T, Seishima M, Shimizu M. Catechins and its role in chronic diseases. Adv Exp Med Biol 2016; 929: 67-90.
[http://dx.doi.org/10.1007/978-3-319-41342-6_4] [PMID: 27771921]
[59]
Taparia SS, Khanna A. Procyanidin-rich extract of natural cocoa powder causes ROS-mediated caspase-3 dependent apoptosis and reduction of pro-MMP-2 in epithelial ovarian carcinoma cell lines. Biomed Pharmacother 2016; 83: 130-40.
[http://dx.doi.org/10.1016/j.biopha.2016.06.019] [PMID: 27470560]
[60]
Moradzadeh M, Hosseini A, Erfanian S, Rezaei H. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase. Pharmacol Rep 2017; 69(5): 924-8.
[http://dx.doi.org/10.1016/j.pharep.2017.04.008] [PMID: 28646740]
[61]
Jeon JS, Kwon S, Ban K, et al. Regulation of the intracellular ROS level is critical for the antiproliferative effect of quercetin in the hepatocellular carcinoma cell line HepG2. Nutr Cancer 2019; 71(5): 861-9.
[http://dx.doi.org/10.1080/01635581.2018.1559929] [PMID: 30661409]
[62]
Niu G, Yin S, Xie S, et al. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells. Acta Biochim Biophys Sin 2011; 43(1): 30-7.
[http://dx.doi.org/10.1093/abbs/gmq107] [PMID: 21173056]
[63]
Wu P, Meng X, Zheng H, et al. Kaempferol attenuates ROS-Induced Hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules 2018; 23(10): 2592.
[http://dx.doi.org/10.3390/molecules23102592] [PMID: 30309003]
[64]
Luo H, Rankin GO, Li Z, DePriest L, Chen YC. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem 2011; 128(2): 513-9.
[http://dx.doi.org/10.1016/j.foodchem.2011.03.073] [PMID: 21625365]
[65]
Souza RP, Bonfim-Mendonça PS, Gimenes F, et al. Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxid Med Cell Longev 2017; 2017: 1-18.
[http://dx.doi.org/10.1155/2017/1512745]
[66]
Meng S, Zhu Y, Li JF, et al. Apigenin inhibits renal cell carcinoma cell proliferation. Oncotarget 2017; 8(12): 19834-42.
[http://dx.doi.org/10.18632/oncotarget.15771] [PMID: 28423637]
[67]
Lim W, Ryu S, Bazer FW, Kim SM, Song G. Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. J Cell Physiol 2018; 233(4): 3129-40.
[http://dx.doi.org/10.1002/jcp.26150] [PMID: 28816359]
[68]
Khoo BY, Chua SL, Balaram P. Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 2010; 11(5): 2188-99.
[http://dx.doi.org/10.3390/ijms11052188] [PMID: 20559509]
[69]
Sorrenti V, Vanella L, Acquaviva R, Cardile V, Giofrè S, Di Giacomo C. Cyanidin induces apoptosis and differentiation in prostate cancer cells. Int J Oncol 2015; 47(4): 1303-10.
[http://dx.doi.org/10.3892/ijo.2015.3130] [PMID: 26315029]
[70]
Hosseini MM, Karimi A, Behroozaghdam M, et al. Cytotoxic and apoptogenic effects of cyanidin-3-glucoside on the glioblastoma cell line. World Neurosurg 2017; 108: 94-100.
[http://dx.doi.org/10.1016/j.wneu.2017.08.133] [PMID: 28867321]
[71]
Pal HC, Sharma S, Strickland LR, et al. Delphinidin reduces cell proliferation and induces apoptosis of non-small-cell lung cancer cells by targeting EGFR/VEGFR2 signaling pathways. PLoS One 2013; 8(10): e77270.
[http://dx.doi.org/10.1371/journal.pone.0077270] [PMID: 24124611]
[72]
Cvorovic J, Tramer F, Granzotto M, Candussio L, Decorti G, Passamonti S. Oxidative stress-based cytotoxicity of delphinidin and cyanidin in colon cancer cells. Arch Biochem Biophys 2010; 501(1): 151-7.
[http://dx.doi.org/10.1016/j.abb.2010.05.019] [PMID: 20494645]
[73]
Chen Y, Wang S, Geng B, Yi Z. Pelargonidin induces antitumor effects in human osteosarcoma cells via autophagy induction, loss of mitochondrial membrane potential, G2/M cell cycle arrest and downregulation of PI3K/AKT signalling pathway. J BUON 2018; 23(3): 735-40.
[PMID: 30003744]
[74]
Hollman PCH, Katan MB. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 1997; 51(8): 305-10.
[http://dx.doi.org/10.1016/S0753-3322(97)88045-6] [PMID: 9436520]
[75]
Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 2017; 105(1): 10-22.
[http://dx.doi.org/10.3945/ajcn.116.136051] [PMID: 27881391]
[76]
Świeca M, Gawlik-Dziki U, Dziki D, Baraniak B, Czyż J. The influence of protein–flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chem 2013; 141(1): 451-8.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.048] [PMID: 23768379]
[77]
Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, Camp JV. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev 2015; 47(2): 175-90.
[http://dx.doi.org/10.3109/03602532.2014.1003649] [PMID: 25633078]
[78]
Scholz S, Williamson G. Interactions affecting the bioavailability of dietary polyphenols in vivo. Int J Vitam Nutr Res 2007; 77(3): 224-35.
[http://dx.doi.org/10.1024/0300-9831.77.3.224] [PMID: 18214024]
[79]
Jakobek L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem 2015; 175: 556-67.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.013] [PMID: 25577120]
[80]
Lotito S, Frei B. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radic Biol Med 2006; 41(12): 1727-46.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.04.033] [PMID: 17157175]
[81]
Rodríguez-García C, Sánchez-Quesada C, Gaforio JJ. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants 2019; 8(5): 137.
[http://dx.doi.org/10.3390/antiox8050137] [PMID: 31109072]
[82]
Gažák R, Fuksová K, Marhol P, Kuzma M, Agarwal R, Křen V. Preparative method for isosilybin isolation based on enzymatic kinetic resolution of silymarin mixture. Process Biochem 2013; 48(1): 184-9.
[http://dx.doi.org/10.1016/j.procbio.2012.11.006]
[83]
Egert S, Rimbach G. Which sources of flavonoids: Complex diets or dietary supplements? Adv Nutr 2011; 2(1): 8-14.
[http://dx.doi.org/10.3945/an.110.000026] [PMID: 22211185]
[84]
Ross JA, Kasum CM. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu Rev Nutr 2002; 22(1): 19-34.
[http://dx.doi.org/10.1146/annurev.nutr.22.111401.144957] [PMID: 12055336]
[85]
Zhu Y, Liu Y, Zhan Y, et al. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from Psidium guajava by high-speed counter-current chromatography (HSCCC). Molecules 2013; 18(12): 15648-61.
[http://dx.doi.org/10.3390/molecules181215648] [PMID: 24352020]
[86]
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 2012; 3: 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[87]
Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer 2007; 121(10): 2225-32.
[http://dx.doi.org/10.1002/ijc.22790] [PMID: 17471564]
[88]
Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta, Gen Subj 2013; 1830(6): 3670-95.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]