Lifestyle and Dietary Patterns as Risk Factors for Osteoporosis: A Literature Review

Page: [806 - 816] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Osteoporosis is a major public health concern and is highly prevalent worldwide. There is increasing evidence about the importance of nutrition to this chronic condition.

Aim: In this literature review, we aim to show the association between dietary patterns and the risk of developing osteoporosis.

Methods: We reviewed and reported over 90 research papers published in Google scholar and ScienceDirect between 1981 and 2020 that investigated a connection between nutrient intake, dietary patterns and lifestyle and the risk of developing osteoporosis.

Conclusion: Bone health is usually supported by nutrients such as calcium, phosphorus, potassium, magnesium, vitamin K and vitamin D. Healthy dietary patterns with high intakes of fruits and vegetables showed protective effects against osteoporosis. Physical activity and exercise also showed beneficial effects in protecting BMD. Other factors such as smoking, alcohol consumption, pregnancy and lactation, and body mass index are all associated with osteoporosis risk. On the other hand, existing research shows that western dietary patterns ,including processed high protein diets, sugar, candy, soft drinks, pizza, French fries, and refined grains, are associated with low bone mineral density (BMD) and a high risk of fractures. Besides all that, it has been reported that postmenopausal women tend to be primarily prone to osteoporosis, and this is mainly due to hormonal insufficiencies.

Graphical Abstract

[1]
Sözen T. Özışık L, Calik Basaran N. An overview and management of osteoporosis. Eur J Rheumatol 2017; 4(1): 46-56.
[http://dx.doi.org/10.5152/eurjrheum.2016.048] [PMID: 28293453]
[2]
I.O.F. About Osteoporosis 2022. Available from : https://www.osteoporosis.foundation
[3]
Akkawi I, Zmerly H. Osteoporosis: Current concepts. Joints 2018; 6(2): 122-7.
[http://dx.doi.org/10.1055/s-0038-1660790] [PMID: 30051110]
[4]
Pouresmaeili F, Kamali Dehghan B, Kamarehei M, Yong Meng G. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 2018; 14: 2029-49.
[http://dx.doi.org/10.2147/TCRM.S138000] [PMID: 30464484]
[5]
Drake MT, Clarke BL, Lewiecki EM. The pathophysiology and treatment of osteoporosis. Clin Ther 2015; 37(8): 1837-50.
[http://dx.doi.org/10.1016/j.clinthera.2015.06.006] [PMID: 26163201]
[6]
Awasthi H, Mani D, Singh D, Gupta A. The underlying pathophysiology and therapeutic approaches for osteoporosis. Med Res Rev 2018; 38(6): 2024-57.
[http://dx.doi.org/10.1002/med.21504] [PMID: 29733451]
[7]
Ilesanmi-Oyelere BL, Kruger MC. Nutrient and dietary patterns in relation to the pathogenesis of postmenopausal osteoporosis—A literature review. Life 2020; 10(10): 220.
[http://dx.doi.org/10.3390/life10100220] [PMID: 32992740]
[8]
Curtis EM, Dennison EM, Cooper C, Harvey NC. Osteoporosis in 2022: Care gaps to screening and personalised medicine. Best Pract Res Clin Rheumatol 2022; 101754.
[http://dx.doi.org/10.1016/j.berh.2022.101754] [PMID: 35691824]
[9]
Rosen CJ. The epidemiology and pathogenesis of osteoporosis.In: Feingold KR, Anawalt B, Boyce A, et al, Eds, Endotext South Dartmouth (MA): MDTextcom, Inc. 2000.
[10]
Black DM, Rosen CJ. Postmenopausal osteoporosis. N Engl J Med 2016; 374(3): 254-62.
[http://dx.doi.org/10.1056/NEJMcp1513724] [PMID: 26789873]
[11]
Park SJ, Joo SE, Min H, et al. Dietary patterns and osteoporosis risk in postmenopausal korean women. Osong Public Health Res Perspect 2012; 3(4): 199-205.
[http://dx.doi.org/10.1016/j.phrp.2012.10.005] [PMID: 24159515]
[12]
van den Bergh JPW, van Geel TACM, Lems WF, Geusens PP. Assessment of individual fracture risk: FRAX and beyond. Curr Osteoporos Rep 2010; 8(3): 131-7.
[http://dx.doi.org/10.1007/s11914-010-0022-3] [PMID: 20563901]
[13]
El Heis MA, Al Kamil EA, Kheirallah KA, Al Shatnawi TN, Gharaibia M, Al Mnayyis A. Factors associated with osteoporosis among a sample of Jordanian women referred for investigation for osteoporosis. East Mediterr Health J 2013; 19(5): 459-64.
[http://dx.doi.org/10.26719/2013.19.5.459] [PMID: 24617125]
[14]
Chiodini I, Bolland MJ. Calcium supplementation in osteoporosis: Useful or harmful? Eur J Endocrinol 2018; 178(4): D13-25.
[http://dx.doi.org/10.1530/EJE-18-0113] [PMID: 29440373]
[15]
Yao X, Hu J, Kong X, Zhu Z. Association between dietary calcium intake and bone mineral density in older adults. Ecol Food Nutr 2020; 2020: 1-12.
[PMID: 32779476]
[16]
OM (Institute of Medicine)Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National Academies Press 2011.
[17]
Tai V, Leung W, Grey A, Reid IR, Bolland MJ. Calcium intake and bone mineral density: Systematic review and meta-analysis. BMJ 2015; 351: h4183.
[http://dx.doi.org/10.1136/bmj.h4183] [PMID: 26420598]
[18]
Vannucci L, Masi L, Gronchi G, Fossi C, Carossino AM, Brandi ML. Calcium intake, bone mineral density, and fragility fractures: evidence from an Italian outpatient population. Arch Osteoporos 2017; 12(1): 40.
[http://dx.doi.org/10.1007/s11657-017-0333-4] [PMID: 28401496]
[19]
Wu J, Xu L, Lv Y, Dong L, Zheng Q, Li L. Quantitative analysis of efficacy and associated factors of calcium intake on bone mineral density in postmenopausal women. Osteoporos Int 2017; 28(6): 2003-10.
[http://dx.doi.org/10.1007/s00198-017-3993-4] [PMID: 28337524]
[20]
Muñoz-Garach A, García-Fontana B, Muñoz-Torres M. Nutrients and dietary patterns related to osteoporosis. Nutrients 2020; 12(7): 1986.
[http://dx.doi.org/10.3390/nu12071986] [PMID: 32635394]
[21]
Vuolo L, Di Somma C, Faggiano A, Colao A. Vitamin D and cancer. Front Endocrinol 2012; 3: 58.
[http://dx.doi.org/10.3389/fendo.2012.00058] [PMID: 22649423]
[22]
Adami S, Giannini S, Bianchi G, et al. Vitamin D status and response to treatment in post-menopausal osteoporosis. Osteoporos Int 2009; 20(2): 239-44.
[http://dx.doi.org/10.1007/s00198-008-0650-y] [PMID: 18551242]
[23]
Kling JM, Clarke BL, Sandhu NP. Osteoporosis prevention, screening, and treatment: A review. J Womens Health 2014; 23(7): 563-72.
[http://dx.doi.org/10.1089/jwh.2013.4611] [PMID: 24766381]
[24]
Tangestani H, Djafarian K, Emamat H, Arabzadegan N, Shab-Bidar S. Efficacy of vitamin D fortified foods on bone mineral density and serum bone biomarkers: A systematic review and meta-analysis of interventional studies. Crit Rev Food Sci Nutr 2020; 60(7): 1094-103.
[http://dx.doi.org/10.1080/10408398.2018.1558172] [PMID: 30638043]
[25]
Feskanich D, Meyer HE, Fung TT, Bischoff-Ferrari HA, Willett WC. Milk and other dairy foods and risk of hip fracture in men and women. Osteoporos Int 2018; 29(2): 385-96.
[http://dx.doi.org/10.1007/s00198-017-4285-8] [PMID: 29075804]
[26]
Plate HE. The nutrition source. Harvard TH Chan School of Public Health. 2021. Available from : https://www. hsph. harvard. edu/nutritionsource/healthy (Accessed on: 2021. 22).
[27]
Vorland CJ, Stremke ER, Moorthi RN, Hill Gallant KM. Effects of excessive dietary phosphorus intake on bone health. Curr Osteoporos Rep 2017; 15(5): 473-82.
[http://dx.doi.org/10.1007/s11914-017-0398-4] [PMID: 28840444]
[28]
Adatorwovor R, Roggenkamp K, Anderson J. Intakes of calcium and phosphorus and calculated calcium-to-phosphorus ratios of older adults: NHANES 2005–2006 data. Nutrients 2015; 7(11): 9633-9.
[http://dx.doi.org/10.3390/nu7115492] [PMID: 26610559]
[29]
Lee KJ, Kim KS, Kim HN, Seo JA, Song SW. Association between dietary calcium and phosphorus intakes, dietary calcium/phosphorus ratio and bone mass in the Korean population. Nutr J 2014; 13(1): 114.
[http://dx.doi.org/10.1186/1475-2891-13-114] [PMID: 25496564]
[30]
Vicente-Rodríguez G, Ezquerra J, Mesana MI, et al. Independent and combined effect of nutrition and exercise on bone mass development. J Bone Miner Metab 2008; 26(5): 416-24.
[http://dx.doi.org/10.1007/s00774-007-0846-9] [PMID: 18758899]
[31]
Lee AW, Cho SS. Association between phosphorus intake and bone health in the NHANES population. Nutr J 2015; 14(1): 28.
[http://dx.doi.org/10.1186/s12937-015-0017-0] [PMID: 25856461]
[32]
Calvo MS, Tucker KL. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health? Ann Acad Sci 2013; 1301(1): 29-35.
[http://dx.doi.org/10.1111/nyas.12300] [PMID: 24472074]
[33]
Kong SH, Kim JH, Hong AR, Lee JH, Kim SW, Shin CS. Dietary potassium intake is beneficial to bone health in a low calcium intake population: the Korean National Health and Nutrition Examination Survey (KNHANES) (2008–2011). Osteoporos Int 2017; 28(5): 1577-85.
[http://dx.doi.org/10.1007/s00198-017-3908-4] [PMID: 28093633]
[34]
Lambert H, Frassetto L, Moore JB, et al. The effect of supplementation with alkaline potassium salts on bone metabolism: a meta-analysis. Osteoporos Int 2015; 26(4): 1311-8.
[http://dx.doi.org/10.1007/s00198-014-3006-9] [PMID: 25572045]
[35]
Erem S, Atfi A, Razzaque MS. Anabolic effects of vitamin D and magnesium in aging bone. J Steroid Biochem Mol Biol 2019; 193: 105400.
[http://dx.doi.org/10.1016/j.jsbmb.2019.105400] [PMID: 31175968]
[36]
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95(1): 1-46.
[http://dx.doi.org/10.1152/physrev.00012.2014] [PMID: 25540137]
[37]
Uwitonze AM, Razzaque MS. Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc 2018; 118(3): 181-9.
[http://dx.doi.org/10.7556/jaoa.2018.037] [PMID: 29480918]
[38]
Veronese N, Stubbs B, Solmi M, et al. Dietary magnesium intake and fracture risk: data from a large prospective study. Br J Nutr 2017; 117(11): 1570-6.
[http://dx.doi.org/10.1017/S0007114517001350] [PMID: 28631583]
[39]
Hayhoe RPG, Lentjes MAH, Luben RN, Khaw KT, Welch AA. Dietary magnesium and potassium intakes and circulating magnesium are associated with heel bone ultrasound attenuation and osteoporotic fracture risk in the EPIC-Norfolk cohort study. Am J Clin Nutr 2015; 102(2): 376-84.
[http://dx.doi.org/10.3945/ajcn.114.102723] [PMID: 26135346]
[40]
Akbari S, Rasouli-Ghahroudi AA. Vitamin K and bone metabolism: a review of the latest evidence in preclinical studies. BioMed Res Int 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/4629383] [PMID: 30050932]
[41]
Fusaro M, Cianciolo G, Brandi ML, et al. Vitamin K and osteoporosis. Nutrients 2020; 12(12): 3625.
[http://dx.doi.org/10.3390/nu12123625] [PMID: 33255760]
[42]
Tsugawa N, Shiraki M. Vitamin K nutrition and bone health. Nutrients 2020; 12(7): 1909.
[http://dx.doi.org/10.3390/nu12071909] [PMID: 32605143]
[43]
Palermo A, Tuccinardi D, D’Onofrio L, et al. Vitamin K and osteoporosis: Myth or reality? Metabolism 2017; 70: 57-71.
[http://dx.doi.org/10.1016/j.metabol.2017.01.032] [PMID: 28403946]
[44]
Mott A, Bradley T, Wright K, et al. Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporos Int 2019; 30(8): 1543-59.
[http://dx.doi.org/10.1007/s00198-019-04949-0] [PMID: 31076817]
[45]
Sellmeyer DE, Stone KL, Sebastian A, Cummings SR. A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Am J Clin Nutr 2001; 73(1): 118-22.
[http://dx.doi.org/10.1093/ajcn/73.1.118] [PMID: 11124760]
[46]
Wallace TC. Optimizing dietary protein for lifelong bone health: a paradox unraveled. Nutr Today 2019; 54(3): 107-15.
[http://dx.doi.org/10.1097/NT.0000000000000340]
[47]
Wallace TC, Frankenfeld CL. Dietary protein intake above the current RDA and bone health: a systematic review and meta-analysis. J Am Coll Nutr 2017; 36(6): 481-96.
[http://dx.doi.org/10.1080/07315724.2017.1322924] [PMID: 28686536]
[48]
Darling AL, Manders RJF, Sahni S, et al. Dietary protein and bone health across the life-course: an updated systematic review and meta-analysis over 40 years. Osteoporos Int 2019; 30(4): 741-61.
[http://dx.doi.org/10.1007/s00198-019-04933-8] [PMID: 30903209]
[49]
Koutsofta I, Mamais I, Chrysostomou S. The effect of protein diets in postmenopausal women with osteoporosis: Systematic review of randomized controlled trials. J Women Aging 2019; 31(2): 117-39.
[http://dx.doi.org/10.1080/08952841.2018.1418822] [PMID: 29319467]
[50]
Cheraghi Z, Doosti-Irani A, Almasi-Hashiani A, et al. The effect of alcohol on osteoporosis: A systematic review and meta-analysis. Drug Alcohol Depend 2019; 197: 197-202.
[http://dx.doi.org/10.1016/j.drugalcdep.2019.01.025] [PMID: 30844616]
[51]
Jang HD, Hong JY, Han K, et al. Relationship between bone mineral density and alcohol intake: A nationwide health survey analysis of postmenopausal women. PLoS One 2017; 12(6): e0180132.
[http://dx.doi.org/10.1371/journal.pone.0180132] [PMID: 28662191]
[52]
Cho Y, Choi S, Kim K, Lee G, Park SM. Association between alcohol consumption and bone mineral density in elderly Korean men and women. Arch Osteoporos 2018; 13(1): 46.
[http://dx.doi.org/10.1007/s11657-018-0462-4] [PMID: 29696513]
[53]
de Jonge EAL, Kiefte-de Jong JC, Hofman A, et al. Dietary patterns explaining differences in bone mineral density and hip structure in the elderly: the Rotterdam Study. Am J Clin Nutr 2017; 105(1): 203-11.
[http://dx.doi.org/10.3945/ajcn.116.139196] [PMID: 27903522]
[54]
Benetou V, Orfanos P, Feskanich D, et al. Mediterranean diet and hip fracture incidence among older adults: the CHANCES project. Osteoporos Int 2018; 29(7): 1591-9.
[http://dx.doi.org/10.1007/s00198-018-4517-6] [PMID: 29656347]
[55]
Dai Z, Butler LM, van Dam RM, Ang LW, Yuan JM, Koh WP. Adherence to a vegetable-fruit-soy dietary pattern or the Alternative Healthy Eating Index is associated with lower hip fracture risk among Singapore Chinese. J Nutr 2014; 144(4): 511-8.
[http://dx.doi.org/10.3945/jn.113.187955] [PMID: 24572035]
[56]
Zupo R, Lampignano L, Lattanzio A, et al. Association between adherence to the Mediterranean Diet and circulating Vitamin D levels. Int J Food Sci Nutr 2020; 71(7): 884-90.
[http://dx.doi.org/10.1080/09637486.2020.1744533] [PMID: 32223463]
[57]
Shen CL, von Bergen V, Chyu MC, et al. Fruits and dietary phytochemicals in bone protection. Nutr Res 2012; 32(12): 897-910.
[http://dx.doi.org/10.1016/j.nutres.2012.09.018] [PMID: 23244535]
[58]
Rivas A, Romero A, Mariscal-Arcas M, et al. Mediterranean diet and bone mineral density in two age groups of women. Int J Food Sci Nutr 2013; 64(2): 155-61.
[http://dx.doi.org/10.3109/09637486.2012.718743] [PMID: 22946650]
[59]
Palomeras-Vilches A, Viñals-Mayolas E, Bou-Mias C, et al. Adherence to the Mediterranean diet and bone fracture risk in middle-aged women: A case control study. Nutrients 2019; 11(10): 2508.
[http://dx.doi.org/10.3390/nu11102508] [PMID: 31635237]
[60]
Pérez-Rey J, Roncero-Martín R, Rico-Martín S, et al. Adherence to a Mediterranean Diet and bone mineral density in Spanish premenopausal women. Nutrients 2019; 11(3): 555.
[http://dx.doi.org/10.3390/nu11030555] [PMID: 30841631]
[61]
Savanelli MC, Barrea L, Macchia PE, et al. Preliminary results demonstrating the impact of Mediterranean diet on bone health. J Transl Med 2017; 15(1): 81.
[http://dx.doi.org/10.1186/s12967-017-1184-x] [PMID: 28438173]
[62]
Silva TR, Martins CC, Ferreira LL, Spritzer PM. Mediterranean diet is associated with bone mineral density and muscle mass in postmenopausal women. Climacteric 2019; 22(2): 162-8.
[http://dx.doi.org/10.1080/13697137.2018.1529747] [PMID: 30661407]
[63]
Sahni S, Mangano KM, McLean RR, Hannan MT, Kiel DP. Dietary approaches for bone health: lessons from the Framingham Osteoporosis Study. Curr Osteoporos Rep 2015; 13(4): 245-55.
[http://dx.doi.org/10.1007/s11914-015-0272-1] [PMID: 26045228]
[64]
Movassagh EZ, Vatanparast H. Current evidence on the association of dietary patterns and bone health: a scoping review. Adv Nutr 2017; 8(1): 1.2-6.
[http://dx.doi.org/10.3945/an.116.013326] [PMID: 28096123 ]
[65]
Fairweather-Tait SJ, Skinner J, Guile GR, Cassidy A, Spector TD, MacGregor AJ. Diet and bone mineral density study in postmenopausal women from the TwinsUK registry shows a negative association with a traditional English dietary pattern and a positive association with wine. Am J Clin Nutr 2011; 94(5): 1371-5.
[http://dx.doi.org/10.3945/ajcn.111.019992] [PMID: 21940596]
[66]
Messina M. Soy foods, isoflavones, and the health of postmenopausal women. Am J Clin Nutr 2014; 100(S1): 423S-30S.
[http://dx.doi.org/10.3945/ajcn.113.071464] [PMID: 24898224]
[67]
Zheng X, Lee SK, Chun OK. Soy isoflavones and osteoporotic bone loss: a review with an emphasis on modulation of bone remodeling. J Med Food 2016; 19(1): 1-14.
[http://dx.doi.org/10.1089/jmf.2015.0045] [PMID: 26670451]
[68]
Shin S, Joung H. A dairy and fruit dietary pattern is associated with a reduced likelihood of osteoporosis in Korean postmenopausal women. Br J Nutr 2013; 110(10): 1926-33.
[http://dx.doi.org/10.1017/S0007114513001219] [PMID: 23578480]
[69]
Ho-Pham LT, Nguyen ND, Nguyen TV. Effect of vegetarian diets on bone mineral density: a Bayesian meta-analysis. Am J Clin Nutr 2009; 90(4): 943-50.
[http://dx.doi.org/10.3945/ajcn.2009.27521] [PMID: 19571226]
[70]
Kovacs CS. Calcium and bone metabolism in pregnancy and lactation. J Clin Endocrinol Metab 2001; 86(6): 2344-8.
[PMID: 11397820]
[71]
Sharma N, Natung T, Barooah R, Ahanthem SS. Effect of multiparity and prolonged lactation on bone mineral density. J Menopausal Med 2016; 22(3): 161-6.
[http://dx.doi.org/10.6118/jmm.2016.22.3.161] [PMID: 28119896]
[72]
Lee EN. Effects of parity and breastfeeding duration on bone density in postmenopausal women. Asian Nurs Res 2019; 13(2): 161-7.
[http://dx.doi.org/10.1016/j.anr.2019.04.002] [PMID: 31026513]
[73]
Okyay DO, Okyay E, Dogan E, Kurtulmus S, Acet F, Eftal Taner C. Prolonged breast-feeding is an independent risk factor for postmenopausal osteoporosis. Maturitas 2013; 74(3): 270-5.
[http://dx.doi.org/10.1016/j.maturitas.2012.12.014] [PMID: 23352271]
[74]
Chowdhury R, Sinha B, Sankar MJ, et al. Breastfeeding and maternal health outcomes: a systematic review and meta-analysis. Acta Paediatr 2015; 104(467): 96-113.
[http://dx.doi.org/10.1111/apa.13102] [PMID: 26172878]
[75]
Tsvetov G, Levy S, Benbassat C, Shraga-Slutzky I, Hirsch D. Influence of number of deliveries and total breast-feeding time on bone mineral density in premenopausal and young postmenopausal women. Maturitas 2014; 77(3): 249-54.
[http://dx.doi.org/10.1016/j.maturitas.2013.11.003] [PMID: 24332872]
[76]
National Center for Chronic Disease Prevention and Health Promotion Physical activity prevents chronic disease. 2020. Available from : [https://www.cdc.gov/chronicdisease/resources/infographic/physical-activity.htm
[77]
Llamas-Velasco S, Villarejo-Galende A, Contador I, Lora Pablos D, Hernández-Gallego J, Bermejo-Pareja F. Physical activity and long-term mortality risk in older adults: A prospective population based study (NEDICES). Prev Med Rep 2016; 4: 546-50.
[http://dx.doi.org/10.1016/j.pmedr.2016.10.002] [PMID: 27785416]
[78]
Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 1995; 57(5): 344-58.
[http://dx.doi.org/10.1007/BF00302070] [PMID: 8564797]
[79]
Turner CH, Pavalko FM. Mechanotransduction and functional response of the skeleton to physical stress: The mechanisms and mechanics of bone adaptation. J Orthop Sci 1998; 3(6): 346-55.
[http://dx.doi.org/10.1007/s007760050064] [PMID: 9811988]
[80]
Krahl H, Michaelis U, Pieper HG, Quack G, Montag M. Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. Am J Sports Med 1994; 22(6): 751-7.
[http://dx.doi.org/10.1177/036354659402200605] [PMID: 7856798]
[81]
Wilks DC, Winwood K, Gilliver SF, et al. Bone mass and geometry of the tibia and the radius of master sprinters, middle and long distance runners, race-walkers and sedentary control participants: A pQCT study. Bone 2009; 45(1): 91-7.
[http://dx.doi.org/10.1016/j.bone.2009.03.660] [PMID: 19332164]
[82]
Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA 1994; 272(24): 1909-14.
[http://dx.doi.org/10.1001/jama.1994.03520240037038] [PMID: 7990242]
[83]
Castrogiovanni P, Trovato FM, Szychlinska MA, Nsir H, Imbesi R, Musumeci G. The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Cell Mol Biol 2016; 31(11): 1183-94.
[PMID: 27311988]
[84]
Bijelic R, Milicevic S, Balaban J. Risk factors for osteoporosis in postmenopausal women. Med Arh 2017; 71(1): 25-8.
[http://dx.doi.org/10.5455/medarh.2017.71.25-28] [PMID: 28428669]
[85]
Kanis JA, Johnell O, Oden A, et al. Smoking and fracture risk: a meta-analysis. Osteoporos Int 2005; 16(2): 155-62.
[http://dx.doi.org/10.1007/s00198-004-1640-3] [PMID: 15175845]
[86]
Holmberg T, Bech M, Curtis T, Juel K, Grønbæk M, Brixen K. Association between passive smoking in adulthood and phalangeal bone mineral density: results from the KRAM study—the danish health examination survey 2007–2008. Osteoporos Int 2011; 22(12): 2989-99.
[http://dx.doi.org/10.1007/s00198-010-1506-9] [PMID: 21170642]
[87]
Iki M. Osteoporosis and smoking. Clin Calcium 2005; 15(7): 156-8.
[PMID: 15995313]
[88]
Yoon V, Maalouf NM, Sakhaee K. The effects of smoking on bone metabolism. Osteoporos Int 2012; 23(8): 2081-92.
[http://dx.doi.org/10.1007/s00198-012-1940-y] [PMID: 22349964]
[89]
Tamaki J, Iki M, Fujita Y, et al. Impact of smoking on bone mineral density and bone metabolism in elderly men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos Int 2011; 22(1): 133-41.
[http://dx.doi.org/10.1007/s00198-010-1238-x] [PMID: 20383631]
[90]
Ward KD, Klesges RC. A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int 2001; 68(5): 259-70.
[http://dx.doi.org/10.1007/BF02390832] [PMID: 11683532]
[91]
Flegal KM, Kit BK, Graubard BI. Body mass index categories in observational studies of weight and risk of death. Am J Epidemiol 2014; 180(3): 288-96.
[http://dx.doi.org/10.1093/aje/kwu111] [PMID: 24893710]
[92]
Barrera G, Bunout D, Gattás V, de la Maza MP, Leiva L, Hirsch S. A high body mass index protects against femoral neck osteoporosis in healthy elderly subjects. Nutrition 2004; 20(9): 769-71.
[http://dx.doi.org/10.1016/j.nut.2004.05.014] [PMID: 15325685]
[93]
Zhao LJ, Jiang H, Papasian CJ, et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 2008; 23(1): 17-29.
[http://dx.doi.org/10.1359/jbmr.070813] [PMID: 17784844]
[94]
Fu X, Ma X, Lu H, He W, Wang Z, Zhu S. Associations of fat mass and fat distribution with bone mineral density in pre- and postmenopausal Chinese women. Osteoporos Int 2011; 22(1): 113-9.
[http://dx.doi.org/10.1007/s00198-010-1210-9] [PMID: 20306018]
[95]
Moran LJ, Teede HJ, Noakes M, Clifton PM, Norman RJ, Wittert GA. Sex hormone binding globulin, but not testosterone, is associated with the metabolic syndrome in overweight and obese women with polycystic ovary syndrome. J Endocrinol Invest 2013; 36(11): 1004-10.
[PMID: 23812344]
[96]
Bredella MA, Torriani M, Ghomi RH, et al. Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity 2011; 19(1): 49-53.
[http://dx.doi.org/10.1038/oby.2010.106] [PMID: 20467419]
[97]
Aguilera-Barreiro LA, Dávalos-Vázquez KF, Jiménez-Méndez C, Jiménez-Mendoza D, Olivarez-Padrón LÁ, Rodríguez-García ME. The relationship of nutritional status, body and mandibular bone mineral density, tooth loss and fracture risk (FRAX) in pre-and postmenopausal women with periodontitis. Nutr Hosp 2014; 29(6): 1419-26.
[PMID: 24972483]
[98]
Wu SF, Du XJ. Body mass index may positively correlate with bone mineral density of lumbar vertebra and femoral neck in postmenopausalfemales. Med Sci Monit 2016; 22: 145-51.
[http://dx.doi.org/10.12659/MSM.895512] [PMID: 26766815]
[99]
Głogowska-Szeląg J. Assessment of the relationship between BMD and body mass index BMI in women with postmenopausal osteoporosis. Wiadomosci lekarskie 2018; 71(9): 1714-8.
[100]
Mazocco L, Chagas P. Association between body mass index and osteoporosis in women from northwestern Rio Grande do Sul. Rev Bras Reumatol Engl Ed 2017; 57(4): 299-305.
[http://dx.doi.org/10.1016/j.rbre.2016.10.002] [PMID: 28743356]
[101]
Ong T, Sahota O, Tan W, Marshall L. A United Kingdom perspective on the relationship between Body Mass Index (BMI) and bone health: A cross sectional analysis of data from the Nottingham Fracture Liaison Service. Bone 2014; 59: 207-10.
[http://dx.doi.org/10.1016/j.bone.2013.11.024] [PMID: 24291203]
[102]
Baccaro LF, Conde D, Costa-Paiva L, Pinto-Neto AM. The epidemiology and management of postmenopausal osteoporosis: a viewpoint from Brazil. Clin Interv Aging 2015; 10: 583-91.
[http://dx.doi.org/10.2147/CIA.S54614] [PMID: 25848234]
[103]
Fistarol M, Rezende CR, Figueiredo Campos AL, Kakehasi AM, Geber S. Time since menopause, but not age, is associated with increased risk of osteoporosis. Climacteric 2019; 22(5): 523-6.
[http://dx.doi.org/10.1080/13697137.2019.1634046] [PMID: 31280605]
[104]
Katsimbri P. The biology of normal bone remodelling. Eur J Cancer Care 2017; 26(6): e12740.
[http://dx.doi.org/10.1111/ecc.12740] [PMID: 28786518]
[105]
Howard GA, Bottemiller BL, Turner RT, Rader JI, Baylink DJ. Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc Natl Acad Sci 1981; 78(5): 3204-8.
[http://dx.doi.org/10.1073/pnas.78.5.3204] [PMID: 6942425]
[106]
Møller AMJ, Delaissé JM, Olesen JB, et al. Aging and menopause reprogram osteoclast precursors for aggressive bone resorption. Bone Res 2020; 8(1): 27.
[http://dx.doi.org/10.1038/s41413-020-0102-7] [PMID: 32637185]
[107]
Tu KN, Lie JD, Wan CKV, et al. Osteoporosis: a review of treatment options. P&T 2018; 43(2): 92-104.
[PMID: 29386866]