Pseudocereals: Nutrition, Health Benefits, and Potential Applications in Gluten-free Food Product Developments

Page: [377 - 385] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Since the dawn of time, cereals have been acknowledged to play a critical role in meeting human food demand as they are capable of providing significant amounts of macro and micronutrients and calories to an individual’s diet. Pseudocereals, on the other hand, are also naturally high in these critical nutrients but have not been fully investigated for their ability to be used in large-scale manufacturing activities. Although pseudocereal grains provide a reasonable advantage to their users in terms of nutrition and health benefits, many people still do not get the whole advantage out of them. Pseudocereals are edible seeds from the class Dicotyledonae, and represent increasingly popular gluten-free grains with high nutritional value in human diets. Pseudocereals are high in starch, fiber, proteins, minerals, vitamins, and phytochemicals (especially phenolics), which dispense profuse health benefits. They can lower the risk of chronic diseases, such as diabetes, cancer, and cardiovascular diseases. Therefore, this work aims to provide an outline of the major types, nutritional and phytochemical composition, health benefits, and potential applications of the three most commonly consumed pseudocereal grains: amaranth, quinoa, and buckwheat, to popularize these grains among people. Commercialization of products containing these pseudocereals would aid in combating a variety of health-related issues. Amaranth, quinoa, and buckwheat are gluten-free sources and contain no prolamins that are harmful to celiac disease patients. Therefore, pseudocereal-incorporated gluten-free foods would symbolize a step forward in guaranteeing sufficient input of nutrients in celiac disease patients.

Graphical Abstract

[1]
Zhu F. Proanthocyanidins in cereals and pseudocereals. Crit Rev Food Sci Nutr 2019; 59(10): 1521-33.
[http://dx.doi.org/10.1080/10408398.2017.1418284] [PMID: 29381376]
[2]
Pirzadah TB, Malik B. Pseudocereals as super foods of 21st century: Recent technological interventions. J Agric Res and Food Research 2020; 2: 100052.
[http://dx.doi.org/10.1016/j.jafr.2020.100052]
[3]
Schmidt D, Verruma-Bernardi MR, Forti VA, Borges MTMR. Quinoa and amaranth as functional foods: A review. Food Rev Int 2021; 38(7): 1-20.
[http://dx.doi.org/10.1080/87559129.2021.1950175]
[4]
Mir NA, Riar CS, Singh S. Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci Technol 2018; 75: 170-80.
[http://dx.doi.org/10.1016/j.tifs.2018.03.016]
[5]
Guzmán-Maldonado SH, Paredes-Lopez O. Functional Products of Plants Indigenous to Latin America: Amaranth, Quinoa. Functional foods: biochemical and processing aspects. CRC Press 1998; 1: p. 293.
[6]
Martínez-Villaluenga C, Peñas E, Hernández-Ledesma B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol 2020; 137: 111178.
[http://dx.doi.org/10.1016/j.fct.2020.111178] [PMID: 32035214]
[7]
Theethira TG, Dennis M. Celiac disease and the gluten-free diet: Consequences and recommendations for improvement. Dig Dis 2015; 33(2): 175-82.
[http://dx.doi.org/10.1159/000369504] [PMID: 25925920]
[8]
Bascuñán KA, Vespa MC, Araya M. Celiac disease: Understanding the gluten-free diet. Eur J Nutr 2017; 56(2): 449-59.
[http://dx.doi.org/10.1007/s00394-016-1238-5] [PMID: 27334430]
[9]
Samasca G, Lerner A, Girbovan A, et al. Challenges in gluten-free diet in coeliac disease: Prague consensus. Eur J Clin Invest 2017; 47(5): 394-7.
[http://dx.doi.org/10.1111/eci.12755] [PMID: 28369858]
[10]
Laparra JM, Haros M. Inclusion of ancient Latin-American crops in bread formulation improves intestinal iron absorption and modulates inflammatory markers. Food Funct 2016; 7(2): 1096-102.
[http://dx.doi.org/10.1039/C5FO01197C] [PMID: 26787109]
[11]
Laparra JM, Haros M. Inclusion of whole flour from Latin-American crops into bread formulations as substitute of wheat delays glucose release and uptake. Plant Foods Hum Nutr 2018; 73(1): 13-7.
[http://dx.doi.org/10.1007/s11130-018-0653-6] [PMID: 29392475]
[12]
Alencar NM, de Carvalho Oliveira L. Advances in Pseudocereals: crop cultivation, food application, and consumer perception. In: Jean-Michel M, Kishan GR, Eds. Bioactive molecules in food. Switzerland Springer Nature 2019; pp. 1695-713.
[13]
Wang XQ, Park YJ. Comparison of genetic diversity among amaranth accessions from South and Southeast Asia using SSR markers. Hangug Jagmul Haghoeji 2013; 21(3): 220-8.
[14]
Adhikary D, Khatri-Chhetri U, Slaski J. In: Viduranga Y.W. Amaranth: An ancient and high-quality wholesome crop. London: IntechOpen 2020.
[http://dx.doi.org/10.5772/intechopen.88093]
[15]
Litvyak V. Size and morphological features of native starch granules of different botanical origin. Ukr Food J 2018; 7(4): 563-76.
[http://dx.doi.org/10.24263/2304-974X-2018-7-4-3]
[16]
Hargava A, Srivastava S. Response of Amaranthus sp. to Salinity Stress: A Review. In: Hirich A, Choukr-Allah R, Ragab R, Eds. Emerging Research in Alternative Crops Environment & Policy. Cham: Springer 2020; Vol. 58: pp. 245-63.
[http://dx.doi.org/10.1007/978-3-319-90472-6_10]
[17]
Gomez-Pando LR, Aguilar-Castellanos E, Ibañez-Tremolada M. Quinoa (Chenopodium quinoa Willd.) breeding. Advances in plant breeding strategies: Cereals. Cham: Springer 2019; pp. 259-316.
[http://dx.doi.org/10.1007/978-3-030-23108-8_7]
[18]
Afrin S. Influence of fertilizer levels on growth and yield of quinoa (Chenopodium quinoa). 2018.
[19]
Singh R, Singh S, Saxena DC. Studies on standardization of alcohol aided starch extraction process from Chenopodium album and its characterization. J Food Meas Charact 2021; 15(6): 5379-91.
[http://dx.doi.org/10.1007/s11694-021-01105-3]
[20]
Montemurro M, Pontonio E, Rizzello CG. Quinoa flour as an ingredient to enhance the nutritional and functional features of cereal-based foods. Flour and Breads and their Fortification in Health and Disease Prevention. Academic Press 2019; pp. 453-64.
[http://dx.doi.org/10.1016/B978-0-12-814639-2.00036-8]
[21]
Rodríguez JP, Rahman H, Thushar S, Singh RK. Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Front Genet 2020; 11: 49.
[http://dx.doi.org/10.3389/fgene.2020.00049] [PMID: 32174958]
[22]
Fotschki B. Juśkiewicz J, Jurgoński A, et al. Protein-rich flours from quinoa and buckwheat favourably affect the growth parameters, intestinal microbial activity and plasma lipid profile of rats. Nutrients 2020; 12(9): 2781.
[http://dx.doi.org/10.3390/nu12092781] [PMID: 32932953]
[23]
Alvarez-Jubete L, Arendt EK, Gallagher E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr 2009; 60(S4): 240-57.
[http://dx.doi.org/10.1080/09637480902950597]
[24]
Morales D, Miguel M, Garcés-Rimón M. Pseudocereals: a novel source of biologically active peptides. Crit Rev Food Sci Nutr 2021; 61(9): 1537-44.
[http://dx.doi.org/10.1080/10408398.2020.1761774] [PMID: 32406747]
[25]
Thakur P, Kumar K, Dhaliwal HS. Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. Food Biosci 2021; 42: 101170.
[http://dx.doi.org/10.1016/j.fbio.2021.101170]
[26]
Alonso-Miravalles L, O’Mahony J. Composition, protein profile and rheological properties of pseudocereal-based protein-rich ingredients. Foods 2018; 7(5): 73.
[http://dx.doi.org/10.3390/foods7050073] [PMID: 29735905]
[27]
Gobbetti M, De Angelis M, Di Cagno R, Polo A, Rizzello CG. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Crit Rev Food Sci Nutr 2020; 60(13): 2158-73.
[http://dx.doi.org/10.1080/10408398.2019.1631753] [PMID: 31257912]
[28]
Nagar P, Engineer R, Rajput K. Review on Pseudo-Cereals of India. Intech Open 2022.
[http://dx.doi.org/10.5772/intechopen.101834]
[29]
Alvarez-Jubete L, Arendt EK, Gallagher E. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci Technol 2010; 21(2): 106-13.
[http://dx.doi.org/10.1016/j.tifs.2009.10.014]
[30]
Anand A, Dhaliwal YS, Verma R. Morphological and functional characteristics of under-utilized crops of Himachal Pradesh. J Pharmacogn Phytochem 2020; 9(5): 71-5.
[31]
Chauhan GS, Eskin NA, Tkachuk R. Nutrients and antinutrients in quinoa seed. Cereal Chem 1992; 69(1): 85-8.
[32]
González Martín MI, Wells Moncada G, Fischer S, Escuredo O. Chemical characteristics and mineral composition of quinoa by near-infrared spectroscopy. J Sci Food Agric 2014; 94(5): 876-81.
[http://dx.doi.org/10.1002/jsfa.6325] [PMID: 23904243]
[33]
Schoenlechner R, Siebenhandl S, Berghofer E. PseudocerealsGluten-free cereal products and beverages. Academic Press 2008; p. 149.
[http://dx.doi.org/10.1016/B978-012373739-7.50009-5]
[34]
Ciudad-Mulero M, Fernández-Ruiz V, Matallana-González MC, Morales P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals Advances in food and nutrition research. Academic Press 2019; pp. 83-134.
[35]
Steadman KJ, Burgoon MS, Schuster RL, Lewis BA, Edwardson SE, Obendorf RL. Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions. J Agric Food Chem 2000; 48(7): 2843-7.
[http://dx.doi.org/10.1021/jf990709t] [PMID: 10898633]
[36]
Abugoch James LE. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res 2009; 58: 1-31.
[http://dx.doi.org/10.1016/S1043-4526(09)58001-1] [PMID: 19878856]
[37]
Krkošková B, Mrázová Z. Prophylactic components of buckwheat. Food Res Int 2005; 38(5): 561-8.
[http://dx.doi.org/10.1016/j.foodres.2004.11.009]
[38]
Rastogi A, Shukla S. Amaranth: a new millennium crop of nutraceutical values. Crit Rev Food Sci Nutr 2013; 53(2): 109-25.
[http://dx.doi.org/10.1080/10408398.2010.517876] [PMID: 23072528]
[39]
Liu RH. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J Nutr 2004; 134(12): 3479S-85S.
[http://dx.doi.org/10.1093/jn/134.12.3479S] [PMID: 15570057]
[40]
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 2016; 8(2): 78.
[http://dx.doi.org/10.3390/nu8020078] [PMID: 26861391]
[41]
Singla RK, Dubey AK, Garg A, et al. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J AOAC Int 2019; 102(5): 1397-400.
[http://dx.doi.org/10.5740/jaoacint.19-0133] [PMID: 31200785]
[42]
Zielinski H, Michalska A, Amigo-Benavent M, del Castillo MD, Piskula MK. Changes in protein quality and antioxidant properties of buckwheat seeds and groats induced by roasting. J Agric Food Chem 2009; 57(11): 4771-6.
[http://dx.doi.org/10.1021/jf900313e] [PMID: 19415894]
[43]
Nešović M, Gašić U, Tosti T, et al. Polyphenol profile of buckwheat honey, nectar and pollen. R Soc Open Sci 2020; 7(12): 201576.
[http://dx.doi.org/10.1098/rsos.201576] [PMID: 33489289]
[44]
Škrovánková S, Válková D. Mlček J. Polyphenols and antioxidant activity in pseudocereals and their products. Potravinarstvo Slovak J Food Sci 2020; 14: 365-70.
[45]
Klimczak I. Małecka M, Pachołek B. Antioxidant activity of ethanolic extracts of amaranth seeds. Food/Nahrung 2002; 46(3): 184-6.
[http://dx.doi.org/10.1002/1521-3803(20020501)46:3<184::AIDFOOD184>3.0.CO;2-H]
[46]
Procopet O, Oroian M. Amaranth seed polyphenol, fatty acid and amino acid profile. Appl Sci 2022; 12(4): 2181.
[http://dx.doi.org/10.3390/app12042181]
[47]
Park JH, Lee YJ, Kim YH, Yoon KS. Antioxidant and antimicrobial activities of Quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Prev Nutr Food Sci 2017; 22(3): 195-202.
[PMID: 29043217]
[48]
Pellegrini M, Lucas-Gonzalez R, Fernández-López J, et al. Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion. J Funct Foods 2017; 38: 77-88.
[http://dx.doi.org/10.1016/j.jff.2017.08.042]
[49]
Petrova P, Petrov K. Lactic acid fermentation of cereals and pseudocereals: Ancient nutritional biotechnologies with modern applications. Nutrients 2020; 12(4): 1118.
[http://dx.doi.org/10.3390/nu12041118] [PMID: 32316499]
[50]
Montoya-Rodríguez A, de Mejía EG, Dia VP, Reyes-Moreno C, Milán-Carrillo J. Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-κB signaling. Mol Nutr Food Res 2014; 58(5): 1028-41.
[http://dx.doi.org/10.1002/mnfr.201300764] [PMID: 24431078]
[51]
Hopman EGD, le Cessie S, von Blomberg BME, Mearin ML. Nutritional management of the gluten-free diet in young people with celiac disease in The Netherlands. J Pediatr Gastroenterol Nutr 2006; 43(1): 102-8.
[http://dx.doi.org/10.1097/01.mpg.0000228102.89454.eb] [PMID: 16819385]
[52]
Yadav L. Pseudocereals: A Novel Path towards Healthy Eating. Intech Open 2022.
[53]
Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E. Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem 2010; 119(2): 770-8.
[http://dx.doi.org/10.1016/j.foodchem.2009.07.032]
[54]
Joshi DC, Sood S, Hosahatti R, et al. From zero to hero: The past, present and future of grain amaranth breeding. Theor Appl Genet 2018; 131(9): 1807-23.
[http://dx.doi.org/10.1007/s00122-018-3138-y] [PMID: 29992369]
[55]
Berti C, Riso P, Brusamolino A, Porrini M. Effect on appetite control of minor cereal and pseudocereal products. Br J Nutr 2005; 94(5): 850-8.
[http://dx.doi.org/10.1079/BJN20051563] [PMID: 16277791]
[56]
Kawa JM, Taylor CG, Przybylski R. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. J Agric Food Chem 2003; 51(25): 7287-91.
[http://dx.doi.org/10.1021/jf0302153] [PMID: 14640572]
[57]
Yilmaz HÖ, Ayhan NY, Meriç ÇS. Buckwheat: a useful food and its effects on human health. Curr Nutr Food Sci 2020; 16(1): 29-34.
[http://dx.doi.org/10.2174/1573401314666180910140021]
[58]
Soriano-García M, Aguirre-Díaz IS. Nutritional functional value and therapeutic utilization of Amaranth Nutritional value of Amaranth. IntechOpen 2019.
[59]
Yu LG, Milton JD, Fernig DG, Rhodes JM. Opposite effects on human colon cancer cell proliferation of two dietary Thomsen-Friedenreich antigen-binding lectins. J Cell Physiol 2001; 186(2): 282-7.
[http://dx.doi.org/10.1002/1097-4652(200102)186:2<282:AID-JCP1028>3.0.CO;2-2] [PMID: 11169464]
[60]
Peter K, Gandhi P. Rediscovering the therapeutic potential of Amaranthus species: A review. Egyptian J Basic Appl Sci 2017; 4(3): 196-205.
[http://dx.doi.org/10.1016/j.ejbas.2017.05.001]
[61]
Gheldof N, Wang XH, Engeseth NJ. Buckwheat honey increases serum antioxidant capacity in humans. J Agric Food Chem 2003; 51(5): 1500-5.
[http://dx.doi.org/10.1021/jf025897t] [PMID: 12590505]
[62]
Angeli V, Miguel Silva P, Crispim Massuela D, et al. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 2020; 9(2): 216.
[http://dx.doi.org/10.3390/foods9020216] [PMID: 32092899]
[63]
Gawlik-Dziki U. Świeca M, Sułkowski M, Dziki D, Baraniak B, Czyż J. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts – In vitro study. Food Chem Toxicol 2013; 57: 154-60.
[http://dx.doi.org/10.1016/j.fct.2013.03.023] [PMID: 23537598]
[64]
El Khoury D, Balfour-Ducharme S, Joye IJ. A review on the gluten-free diet: Technological and nutritional challenges. Nutrients 2018; 10(10): 1410.
[http://dx.doi.org/10.3390/nu10101410] [PMID: 30279384]
[65]
Khan A, Suarez MG, Murray JA. Nonceliac gluten and wheat sensitivity. Clin Gastroenterol Hepatol 2020; 18(9): 1913-22.
[http://dx.doi.org/10.1016/j.cgh.2019.04.009] [PMID: 30978535]
[66]
Haros CM, Sanz-Penella JM. Food uses of whole pseudocereals. In: C.M Haros, J.M Sanz-Penella, Eds., Pseudo-cereals: Chemistry and Technology. eJohn Wiley & Sons 2017; 163-92.
[http://dx.doi.org/10.1002/9781118938256.ch8]
[67]
Sayed HS, Sakr AM, Hassan NM. Effect of pseudo cereal flours on technological, chemical and sensory properties of pan bread. World J Dairy Food Sci 2016; 11(1): 10-7.
[68]
Machado Alencar NM, Steel CJ, Alvim ID, de Morais EC, Andre Bolini HM. Addition of quinoa and amaranth flour in gluten-free breads: Temporal profile and instrumental analysis. Lebensm Wiss Technol 2015; 62(2): 1011-8.
[http://dx.doi.org/10.1016/j.lwt.2015.02.029]
[69]
Kaur S, Kaur N. Development and sensory evaluation of gluten free bakery products using quinoa (Chenopodium Quinoa) flour. J Appl Nat Sci 2017; 9(4): 2449-55.
[http://dx.doi.org/10.31018/jans.v9i4.1552]
[70]
Makdoud S, Rosentrater KA. Development and testing of gluten-free pasta based on rice, quinoa and amaranth flours. J Food Res 2017; 6(4): 91.
[http://dx.doi.org/10.5539/jfr.v6n4p91]
[71]
Chauhan A, Saxena DC, Singh S. Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. Lebensm Wiss Technol 2015; 63(2): 939-45.
[http://dx.doi.org/10.1016/j.lwt.2015.03.115]
[72]
Kaur M, Sandhu KS, Arora A, Sharma A. Gluten free biscuits prepared from buckwheat flour by incorporation of various gums: Physicochemical and sensory properties. Lebensm Wiss Technol 2015; 62(1): 628-32.
[http://dx.doi.org/10.1016/j.lwt.2014.02.039]
[73]
Jan KN, Panesar PS, Singh S. Optimization of antioxidant activity, textural and sensory characteristics of gluten-free cookies made from whole Indian quinoa flour 2018. Food Sci Technol 2018; 93: 573-83.
[http://dx.doi.org/10.1016/j.lwt.2018.04.013]
[74]
Kahlon TS, Avena-Bustillos RJ, Chiu MCM. Sensory evaluation of gluten-free quinoa whole grain snacks. Heliyon 2016; 2(12): e00213.
[http://dx.doi.org/10.1016/j.heliyon.2016.e00213] [PMID: 28054034]
[75]
Mert S, Sahin S, Sumnu G. Development of gluten-free wafer sheet formulations. Lebensm Wiss Technol 2015; 63(2): 1121-7.
[http://dx.doi.org/10.1016/j.lwt.2015.04.035]
[76]
Ludena Urquizo FE, García Torres SM, Tolonen T, et al. Development of a fermented quinoa-based beverage. Food Sci Nutr 2017; 5(3): 602-8.
[http://dx.doi.org/10.1002/fsn3.436] [PMID: 28572947]
[77]
Deželak M, Zarnkow M, Becker T, Košir IJ. Processing of bottom-fermented gluten-free beer-like beverages based on buckwheat and quinoa malt with chemical and sensory characterization. J Inst Brew 2014; 120(4): 360-70.
[http://dx.doi.org/10.1002/jib.166]