Characteristics of Enzymatic Hydrolysis of Protein from Different Food Sources and Potential Separation Techniques

Page: [590 - 601] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Enzymatic hydrolysis (EH) of proteins relies essentially upon enhancing the functional and nutritional properties of proteins, such as antioxidant activity, solubility, oil holding capacity, water holding capacity, emulsification, foaming properties, and sensory properties. There is a big challenge for protein separation and purification due to the high production cost, the large number of amino acids, and the complex biological system of proteins. These biological structures are always presented in a multi-component mixture in native environments, which are usually similar to other molecular weights of other components, such as protein-lipid complexes. These difficulties present the importance of a combination of the hydrolysis process of protein with adequate technology for separation and purification to achieve better bioactive peptide recovery. There are many studies conducted dealing with the characteristics of the hydrolysis process of proteins, and other implications, such as the separation of protein and bioactive peptides. Therefore, this study aims to review the important and recent research papers that investigated the effect of various conditions of the enzymatic hydrolysis process (EHP) (type of enzyme, enzyme to substrate ratio, temperature, pH, and time) on the antioxidant capacity of protein hydrolysates and degree of hydrolysis, as well as to assess the recent studies about protein purification and potential separation techniques.

Keywords: bioactive peptide, hydrolysates, collagen, purification, resin, filtration

Graphical Abstract

[1]
Kraus A. Development of functional food with the participation of the consumer. Motivators for consumption of functional products. Int J Consum Stud 2015; 39(1): 2-11.
[http://dx.doi.org/10.1111/ijcs.12144]
[2]
Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods 2015; 18: 757-81.
[http://dx.doi.org/10.1016/j.jff.2015.01.047]
[3]
Tremblay TL, Hill JJ. Adding polyvinylpyrrolidone to low level protein samples significantly improves peptide recovery in FASP digests: An inexpensive and simple modification to the FASP protocol. J Proteomics 2021; 230: 104000.
[http://dx.doi.org/10.1016/j.jprot.2020.104000] [PMID: 33011348]
[4]
Wu M, Zhu Z, Li S. et al. Green recovery of Se-rich protein and antioxidant peptides from Cardamine violifolia: Composition and bioactivity. Food Biosci 2020; 38: 100743.
[http://dx.doi.org/10.1016/j.fbio.2020.100743]
[5]
Panyam D, Kilara A. Enhancing the functionality of food proteins by enzymatic modification. Trends Food Sci Technol 1996; 7(4): 120-5.
[http://dx.doi.org/10.1016/0924-2244(96)10012-1]
[6]
Nongonierma AB, Le Maux S, Dubrulle C, Barre C, FitzGerald RJ. Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. J Cereal Sci 2015; 65: 112-8.
[http://dx.doi.org/10.1016/j.jcs.2015.07.004]
[7]
Tkaczewska J, Borawska-Dziadkiewicz J, Kulawik P, Duda I, Morawska M, Mickowska B. The effects of hydrolysis condition on the antioxidant activity of protein hydrolysate from Cyprinus carpio skin gelatin. Lebensm Wiss Technol 2020; 117: 108616.
[http://dx.doi.org/10.1016/j.lwt.2019.108616]
[8]
Shahi Z, Sayyed-Alangi SZ, Najafian L. Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon 2020; 6(2): e03365.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03365] [PMID: 32072055]
[9]
Evangelho JA, Berrios JJ, Pinto VZ, Antunes MD, Vanier NL, Zavareze ER. Antioxidant activity of black bean (Phaseolus vulgaris L.) protein hydrolysates. Food Sci Technol 2016; 36(S1): 23-7.
[http://dx.doi.org/10.1590/1678-457x.0047]
[10]
Mao XY, Cheng X, Wang X, Wu SJ. Free-radical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chem 2011; 126(2): 484-90.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.025]
[11]
Zhao XH, Wu D, Li TJ. Preparation and radical scavenging activity of papain-catalyzed casein plasteins. Dairy Sci Technol 2010; 90(5): 521-35.
[http://dx.doi.org/10.1051/dst/2009054]
[12]
Shu G, Huang J, Bao C, Meng J, Chen H, Cao J. Effect of different proteases on the degree of hydrolysis and angiotensin I-converting enzyme-inhibitory activity in goat and cow milk. Biomolecules 2018; 8(4): 101.
[http://dx.doi.org/10.3390/biom8040101] [PMID: 30262795]
[13]
García M, Urrea JL, Collado S, Oulego P, Díaz M. Protein recovery from solubilized sludge by hydrothermal treatments. Waste Manag 2017; 67: 278-87.
[http://dx.doi.org/10.1016/j.wasman.2017.05.051] [PMID: 28601580]
[14]
Boleij M, Pabst M, Neu TR, van Loosdrecht MCM, Lin Y. Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge. Environ Sci Technol 2018; 52(22): 13127-35.
[http://dx.doi.org/10.1021/acs.est.8b03180] [PMID: 30335377]
[15]
Feng C, Lotti T, Lin Y, Malpei F. Extracellular polymeric substances extraction and recovery from anammox granules: Evaluation of methods and protocol development. Chem Eng J 2019; 374: 112-22.
[http://dx.doi.org/10.1016/j.cej.2019.05.127]
[16]
Wu B, Chai X, Zhao Y. Enhanced dewatering of waste-activated sludge by composite hydrolysis enzymes. Bioprocess Biosyst Eng 2016; 39(4): 627-39.
[http://dx.doi.org/10.1007/s00449-016-1544-6] [PMID: 26815556]
[17]
Noman A, Xu Y. AL-Bukhaiti WQ, et al. Influence of enzymatic hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochem 2018; 67: 19-28.
[http://dx.doi.org/10.1016/j.procbio.2018.01.009]
[18]
Benjakul S, Morrissey MT. Protein hydrolysates from Pacific whiting solid wastes. J Agric Food Chem 1997; 45(9): 3423-30.
[http://dx.doi.org/10.1021/jf970294g]
[19]
Bhaskar N, Benila T, Radha C, Lalitha RG. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresour Technol 2008; 99(2): 335-43.
[http://dx.doi.org/10.1016/j.biortech.2006.12.015] [PMID: 17303414]
[20]
Kaur S, Huppertz T, Vasiljevic T. Milk protein hydrolysis by actinidin: Influence of protein source and hydrolysis conditions. Int Dairy J 2021; 118: 105029.
[http://dx.doi.org/10.1016/j.idairyj.2021.105029]
[21]
Ibrahim S. Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of tuna (Euthynnus affinis) by using alcalase. Sains Malays 2013; 42(3): 279-87.
[22]
Zheng H, Shen X, Bu G, Luo Y. Effects of pH, temperature and enzyme-to-substrate ratio on the antigenicity of whey protein hydrolysates prepared by Alcalase. Int Dairy J 2008; 18(10-11): 1028-33.
[http://dx.doi.org/10.1016/j.idairyj.2008.05.002]
[23]
Mao Y, Krischke M, Hengst C, Kulozik U. Comparison of the influence of pH on the selectivity of free and immobilized trypsin for β-lactoglobulin hydrolysis. Food Chem 2018; 253: 194-202.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.151] [PMID: 29502821]
[24]
Mao Y, Černigoj U, Zalokar V, Štrancar A, Kulozik U. Production of β-Lactoglobulin hydrolysates by monolith based immobilized trypsin reactors. Electrophoresis 2017; 38(22-23): 2947-56.
[http://dx.doi.org/10.1002/elps.201700188] [PMID: 28714138]
[25]
Butré CI, Sforza S, Wierenga PA, Gruppen H. Determination of the influence of the pH of hydrolysis on enzyme selectivity of Bacillus licheniformis protease towards whey protein isolate. Int Dairy J 2015; 44: 44-53.
[http://dx.doi.org/10.1016/j.idairyj.2014.12.007]
[26]
Le Maux S, Nongonierma AB, FitzGerald RJ. Peptide composition and dipeptidyl peptidase IV inhibitory properties of β-lactoglobulin hydrolysates having similar extents of hydrolysis while generated using different enzyme-to-substrate ratios. Food Res Int 2017; 99(Pt 1): 84-90.
[http://dx.doi.org/10.1016/j.foodres.2017.05.012] [PMID: 28784550]
[27]
Cheison SC, Kulozik U. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review. Crit Rev Food Sci Nutr 2017; 57(2): 418-53.
[http://dx.doi.org/10.1080/10408398.2014.959115] [PMID: 25976220]
[28]
Gatt E, Khatri V, Bley J, Barnabé S, Vandenbossche V, Beauregard M. Enzymatic hydrolysis of corn crop residues with high solid loadings: New insights into the impact of bioextrusion on biomass deconstruction using carbohydrate-binding modules. Bioresour Technol 2019; 282: 398-406.
[http://dx.doi.org/10.1016/j.biortech.2019.03.045] [PMID: 30884460]
[29]
Ramachandriya KD, Wilkins M, Atiyeh HK, Dunford NT, Hiziroglu S. Effect of high dry solids loading on enzymatic hydrolysis of acid bisulfite pretreated Eastern redcedar. Bioresour Technol 2013; 147: 168-76.
[http://dx.doi.org/10.1016/j.biortech.2013.08.048] [PMID: 23994698]
[30]
Bučko S, Katona J, Popović L, Petrović L, Milinković J. Influence of enzymatic hydrolysis on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate. Food Hydrocoll 2016; 60: 271-8.
[http://dx.doi.org/10.1016/j.foodhyd.2016.04.005]
[31]
Coscueta ER, Campos DA, Osório H, Nerli BB, Pintado M. Enzymatic soy protein hydrolysis: A tool for biofunctional food ingredient production. Food Chem X 2019; 1: 100006.
[http://dx.doi.org/10.1016/j.fochx.2019.100006] [PMID: 31432006]
[32]
Naqash SY, Nazeer RA. Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle. J Food Sci Technol 2013; 50(5): 972-8.
[http://dx.doi.org/10.1007/s13197-011-0416-y] [PMID: 24426005]
[33]
Nwachukwu ID, Aluko RE. Structural and functional properties of food protein-derived antioxidant peptides. J Food Biochem 2019; 43(1): e12761.
[http://dx.doi.org/10.1111/jfbc.12761] [PMID: 31353492]
[34]
Korhonen H, Pihlanto A. Food-derived bioactive peptides opportunities for designing future foods. Curr Pharm Des 2003; 9(16): 1297-308.
[http://dx.doi.org/10.2174/1381612033454892] [PMID: 12769738]
[35]
Halim NRA, Yusof HM, Sarbon NM. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends Food Sci Technol 2016; 51: 24-33.
[http://dx.doi.org/10.1016/j.tifs.2016.02.007]
[36]
Tavano OL, Berenguer-Murcia A, Secundo F, Fernandez-Lafuente R. Biotechnological applications of proteases in food technology. Compr Rev Food Sci Food Saf 2018; 17(2): 412-36.
[http://dx.doi.org/10.1111/1541-4337.12326] [PMID: 33350076]
[37]
Nongonierma AB, Mazzocchi C, Paolella S, FitzGerald RJ. Release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from Milk Protein Isolate (MPI) during enzymatic hydrolysis. Food Res Int 2017; 94: 79-89.
[http://dx.doi.org/10.1016/j.foodres.2017.02.004] [PMID: 28290371]
[38]
Chalamaiah M. Dinesh kumar B, Hemalatha R, Jyothirmayi T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem 2012; 135(4): 3020-38.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.100] [PMID: 22980905]
[39]
Pezeshk S, Ojagh SM, Rezaei M, Shabanpour B. Fractionation of protein hydrolysates of fish waste using membrane ultrafiltration: Investigation of antibacterial and antioxidant activities. Probiotics Antimicrob Proteins 2019; 11(3): 1015-22.
[http://dx.doi.org/10.1007/s12602-018-9483-y] [PMID: 30415461]
[40]
Rodríguez-Díaz JC, Kurozawa LE, Netto FM, Hubinger MD. Optimization of the enzymatic hydrolysis of Blue shark skin. J Food Sci 2011; 76(7): C938-49.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02318.x] [PMID: 22417547]
[41]
Khantaphant S, Benjakul S. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comp Biochem Physiol B Biochem Mol Biol 2008; 151(4): 410-9.
[http://dx.doi.org/10.1016/j.cbpb.2008.08.011] [PMID: 18793744]
[42]
Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int 2005; 38(2): 175-82.
[http://dx.doi.org/10.1016/j.foodres.2004.10.002]
[43]
Sarmadi BH, Ismail A. Antioxidative peptides from food proteins: A review. Peptides 2010; 31(10): 1949-56.
[http://dx.doi.org/10.1016/j.peptides.2010.06.020] [PMID: 20600423]
[44]
Ballatore MB, Bettiol MR, Vanden BNL. et al. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin. Food Chem 2020; 319: 126472.
[http://dx.doi.org/10.1016/j.foodchem.2020.126472] [PMID: 32163839]
[45]
Wu H, Liu Z, Zhao Y, Zeng M. Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein. Food Res Int 2012; 48(2): 435-41.
[http://dx.doi.org/10.1016/j.foodres.2012.04.013]
[46]
Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem 2010; 121(1): 178-84.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.027]
[47]
Galante M, De Flaviis R, Boeris V, Spelzini D. Effects of the enzymatic hydrolysis treatment on functional and antioxidant properties of quinoa protein acid-induced gels. Lebensm Wiss Technol 2020; 118: 108845.
[http://dx.doi.org/10.1016/j.lwt.2019.108845]
[48]
Esfandi R, Walters ME, Tsopmo A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019; 5(4): e01538.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01538] [PMID: 31183417]
[49]
Kitts D, Weiler K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des 2003; 9(16): 1309-23.
[http://dx.doi.org/10.2174/1381612033454883] [PMID: 12769739]
[50]
Toldrá F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chem 2018; 267: 395-404.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.119] [PMID: 29934183]
[51]
Chalamaiah M, Rao GN, Rao DG, Jyothirmayi T. Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chem 2010; 120(3): 652-7.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.057]
[52]
Gomes MHG, Kurozawa LE. Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. J Food Eng 2020; 267: 109761.
[http://dx.doi.org/10.1016/j.jfoodeng.2019.109761]
[53]
Vieira GHF, Martin AM, Saker-Sampaiao S, Omar S, Goncalves RCF. Studies on the enzymatic hydrolysis of Brazilian lobster (Panulirus spp) processing wastes. J Sci Food Agric 1995; 69(1): 61-5.
[http://dx.doi.org/10.1002/jsfa.2740690110]
[54]
Diniz FM, Martin AM. Optimization of nitrogen recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias) protein. Composition of the hydrolysates. Int J Food Sci Nutr 1997; 48(3): 191-200.
[http://dx.doi.org/10.3109/09637489709012592] [PMID: 9205594]
[55]
dos Santos SDA, Martins VG, Salas-Mellado M, Prentice C. Evaluation of functional properties in protein hydrolysates from bluewing searobin (Prionotus punctatus) obtained with different microbial enzymes. Food Bioprocess Technol 2011; 4(8): 1399-406.
[http://dx.doi.org/10.1007/s11947-009-0301-0]
[56]
Zang X, Yue C, Wang Y, Shao M, Yu G. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J Cereal Sci 2019; 85: 168-74.
[http://dx.doi.org/10.1016/j.jcs.2018.09.001]
[57]
Chalamaiah M, Jyothirmayi T, Diwan PV, Dinesh Kumar B. Antioxidant activity and functional properties of enzymatic protein hydrolysates from common carp (Cyprinus carpio) roe (egg). J Food Sci Technol 2015; 52(9): 5817-25.
[http://dx.doi.org/10.1007/s13197-015-1714-6] [PMID: 26344996]
[58]
Moghadam M, Salami M, Mohammadian M, Emam-Djomeh Z, Jahanbani R, Moosavi-Movahedi AA. Physicochemical and bio-functional properties of walnut proteins as affected by trypsin-mediated hydrolysis. Food Biosci 2020; 36: 100611.
[http://dx.doi.org/10.1016/j.fbio.2020.100611]
[59]
Nisov A, Ercili-Cura D, Nordlund E. Limited hydrolysis of rice endosperm protein for improved techno-functional properties. Food Chem 2020; 302: 125274.
[http://dx.doi.org/10.1016/j.foodchem.2019.125274] [PMID: 31404869]
[60]
Hemker AK, Nguyen LT, Karwe M, Salvi D. Effects of pressure-assisted enzymatic hydrolysis on functional and bioactive properties of tilapia (Oreochromis niloticus) by-product protein hydrolysates. Lebensm Wiss Technol 2020; 122: 109003.
[http://dx.doi.org/10.1016/j.lwt.2019.109003]
[61]
Garcia-Mora P, Peñas E, Frías J, Gomez R, Martinez-Villaluenga C. High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chem 2015; 171: 224-32.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.116] [PMID: 25308663]
[62]
Queirós RP, Saraiva JA, da Silva JAL. Tailoring structure and technological properties of plant proteins using high hydrostatic pressure. Crit Rev Food Sci Nutr 2018; 58(9): 1538-56.
[http://dx.doi.org/10.1080/10408398.2016.1271770] [PMID: 28071938]
[63]
Girgih AT, Chao D, Lin L, He R, Jung S, Aluko RE. Enzymatic protein hydrolysates from high pressure-pretreated isolated pea proteins have better antioxidant properties than similar hydrolysates produced from heat pretreatment. Food Chem 2015; 188: 510-6.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.024] [PMID: 26041225]
[64]
Maresca P, Ferrari G. Modelling of the kinetics of bovine serum albumin enzymatic hydrolysis assisted by high hydrostatic pressure. Food Bioprod Process 2017; 105: 1-11.
[http://dx.doi.org/10.1016/j.fbp.2017.03.006]
[65]
Quirós A, Chichón R, Recio I, Lópezfandiño R. The use of high hydrostatic pressure to promote the proteolysis and release of bioactive peptides from ovalbumin. Food Chem 2007; 104(4): 1734-9.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.050]
[66]
Zhang T, Jiang B, Miao M, Mu W, Li Y. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chem 2012; 135(3): 904-12.
[http://dx.doi.org/10.1016/j.foodchem.2012.05.097] [PMID: 22953804]
[67]
Masschalck B, Van Houdt R, Van Haver EGR, Michiels CW. Inactivation of gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure. Appl Environ Microbiol 2001; 67(1): 339-44.
[http://dx.doi.org/10.1128/AEM.67.1.339-344.2001] [PMID: 11133464]
[68]
Chao D, He R, Jung S, Aluko RE. Effect of pressure or temperature pretreatment of isolated pea protein on properties of the enzymatic hydrolysates. Food Res Int 2013; 54(2): 1528-34.
[http://dx.doi.org/10.1016/j.foodres.2013.09.020]
[69]
Daliri H, Ahmadi R, Pezeshki A. et al Quinoa bioactive protein hydrolysate produced by pancreatin enzyme-functional and antioxidant properties. Lebensm Wiss Technol 2021; 150: 111853.
[http://dx.doi.org/10.1016/j.lwt.2021.111853]
[70]
Chen L, Chen J, Ren J, Zhao M. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocoll 2011; 25(5): 887-97.
[http://dx.doi.org/10.1016/j.foodhyd.2010.08.013]
[71]
Lamsal BP, Jung S, Johnson LA. Rheological properties of soy protein hydrolysates obtained from limited enzymatic hydrolysis. Lebensm Wiss Technol 2007; 40(7): 1215-23.
[http://dx.doi.org/10.1016/j.lwt.2006.08.021]
[72]
Zhang Q, Cheng Z, Wang Y, Zheng S, Wang Y, Fu L. Combining Alcalase hydrolysis and transglutaminase-cross-linking improved bitterness and techno-functional properties of hypoallergenic soybean protein hydrolysates through structural modifications. Lebensm Wiss Technol 2021; 151: 112096.
[http://dx.doi.org/10.1016/j.lwt.2021.112096]
[73]
Samaei SP, Ghorbani M, Tagliazucchi D. et al. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba, L.) seed protein hydrolysates and fortified apple juice. Food Chem 2020; 330: 127120.
[http://dx.doi.org/10.1016/j.foodchem.2020.127120] [PMID: 32526646]
[74]
Ding Y, Chen L, Shi Y, Akhtar M, Chen J, Ettelaie R. Emulsifying and emulsion stabilizing properties of soy protein hydrolysates, covalently bonded to polysaccharides: The impact of enzyme choice and the degree of hydrolysis. Food Hydrocoll 2021; 113: 106519.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106519]
[75]
Tejpal CS, Vijayagopal P, Elavarasan K. et al. Evaluation of pepsin derived tilapia fish waste protein hydrolysate as a feed ingredient for silver pompano (Trachinotus blochii) fingerlings: Influence on growth, metabolism, immune and disease resistance. Anim Feed Sci Technol 2021; 272: 114748.
[http://dx.doi.org/10.1016/j.anifeedsci.2020.114748]
[76]
Rosenthal A, Pyle DL, Niranjan K, Gilmour S, Trinca L. Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzyme Microb Technol 2001; 28(6): 499-509.
[http://dx.doi.org/10.1016/S0141-0229(00)00351-3] [PMID: 11267644]
[77]
Qian J, Tong J, Chen Y, Yao S, Guo H, Yang L. Study on lipids transfer in aqueous enzyme hydrolysis soybean protein and oil extraction process. Ind Crops Prod 2019; 137: 203-7.
[http://dx.doi.org/10.1016/j.indcrop.2019.04.063]
[78]
Rovaris ÂA, Dias CO, da Cunha IP. et al Chemical composition of solid waste and effect of enzymatic oil extraction on the microstructure of soybean (Glycine max). Ind Crops Prod 2012; 36(1): 405-14.
[http://dx.doi.org/10.1016/j.indcrop.2011.10.001]
[79]
Selamassakul O, Laohakunjit N, Kerdchoechuen O, Yang L, Maier CS. Isolation and characterisation of antioxidative peptides from bromelain-hydrolysed brown rice protein by proteomic technique. Process Biochem 2018; 70: 179-87.
[http://dx.doi.org/10.1016/j.procbio.2018.03.024] [PMID: 31031560]
[80]
Bhavsar P, Fontana GD, Tonin C, Patrucco A, Zoccola M. Superheated water hydrolyses of waste silkworm pupae protein hydrolysate: A novel application for natural dyeing of silk fabric. Dyes Pigments 2020; 183: 108678.
[http://dx.doi.org/10.1016/j.dyepig.2020.108678]
[81]
Fan M, Guo T, Li W. et al Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus. Food Sci Hum Wellness 2019; 8(2): 156-76.
[http://dx.doi.org/10.1016/j.fshw.2019.03.010]
[82]
Qu W, Ma H, Zhao W, Pan Z. ACE-inhibitory peptides production from defatted wheat germ protein by continuous coupling of enzymatic hydrolysis and membrane separation: Modeling and experimental studies. Chem Eng J 2013; 226: 139-45.
[http://dx.doi.org/10.1016/j.cej.2013.04.030]
[83]
Nouri L, Legrand J, Popineau Y, Belleville P. Enzymatic hydrolysis of wheat proteins Part I. Enzymatic kinetics and study of limited hydrolysis in a batch stirred reactor. Chem Eng J 1997; 65(3): 187-94.
[http://dx.doi.org/10.1016/S1385-8947(97)00002-8]
[84]
Nouri L, Legrand J, Popineau Y, Belleville P. Enzymatic hydrolysis of wheat proteins Part 2: Comparison of performance of batch-stirred and torus reactors. Chem Eng J 1997; 65(3): 195-9.
[http://dx.doi.org/10.1016/S1385-8947(97)00003-X]
[85]
Gan Q, Allen SJ, Taylor G. Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: An overview, an experimental study and mathematical modelling. Process Biochem 2003; 38(7): 1003-18.
[http://dx.doi.org/10.1016/S0032-9592(02)00220-0]
[86]
Shi LE, Ying GQ, Tang ZX, Chen JS, Xiong WY, Wang H. Continuous enzymatic production of 5′-nucleotides using free nuclease P1 in ultrafiltration membrane reactor. J Membr Sci 2009; 345(1-2): 217-22.
[http://dx.doi.org/10.1016/j.memsci.2009.09.001]
[87]
Alam MNHZ. Continuous membrane microbioreactor for development of integrated pectin modification and separation processes. Chem Eng J 2011; 167(2-3): 418-26.
[http://dx.doi.org/10.1016/j.cej.2010.09.082]
[88]
Abd El-Salam MH, El-Shibiny S. Separation of bioactive whey proteins and peptides. In: Ingredients extraction by physicochemical methods in food. Elsevier 2017; pp. 463-94.
[http://dx.doi.org/10.1016/B978-0-12-811521-3.00012-0]
[89]
Lu RR, Xu SY, Wang Z, Yang RJ. Isolation of lactoferrin from bovine colostrum by ultrafiltration coupled with strong cation exchange chromatography on a production scale. J Membr Sci 2007; 297(1-2): 152-61.
[http://dx.doi.org/10.1016/j.memsci.2007.03.039]
[90]
Cecile Urbain Marie G, Perreault V, Henaux L. et al. Impact of a high hydrostatic pressure pretreatment on the separation of bioactive peptides from flaxseed protein hydrolysates by electrodialysis with ultrafiltration membranes. Separ Purif Tech 2019; 211: 242-51.
[http://dx.doi.org/10.1016/j.seppur.2018.09.063]
[91]
Baker RW. Membrane technology and applications. John Wiley & Sons 2012.
[http://dx.doi.org/10.1002/9781118359686]
[92]
Bazinet L, Firdaous L. Separation of bioactive peptides by membrane processes: Technologies and devices. Recent Pat Biotechnol 2013; 7(1): 9-27.
[http://dx.doi.org/10.2174/1872208311307010003] [PMID: 23003009]
[93]
Hashimoto T. Macroporous synthetic hydrophilic resin-based packings for the separation of biopolymers. J Chromatogr A 1991; 544: 249-55.
[http://dx.doi.org/10.1016/S0021-9673(01)83989-3]
[94]
Wan P, Sheng Z, Han Q, Zhao Y, Cheng G, Li Y. Enrichment and purification of total flavonoids from Flos populi extracts with macroporous resins and evaluation of antioxidant activities in vitro. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 945-946: 68-74.
[http://dx.doi.org/10.1016/j.jchromb.2013.11.033] [PMID: 24321763]
[95]
Jin X, Liu M, Chen Z. et al. Separation and purification of epigallocatechin-3-gallate (EGCG) from green tea using combined macroporous resin and polyamide column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002: 113-22.
[http://dx.doi.org/10.1016/j.jchromb.2015.07.055] [PMID: 26319304]
[96]
Ma C, Hu L, Fu Q, Gu X, Tao G, Wang H. Separation of four flavonoids from Rhodiola rosea by on-line combination of sample preparation and counter-current chromatography. J Chromatogr A 2013; 1306: 12-9.
[http://dx.doi.org/10.1016/j.chroma.2013.07.052] [PMID: 23890556]
[97]
Zou Y, Zhao M, Yang K, Lin L, Wang Y. Enrichment of antioxidants in black garlic juice using macroporous resins and their protective effects on oxidation-damaged human erythrocytes. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060: 443-50.
[http://dx.doi.org/10.1016/j.jchromb.2017.06.026] [PMID: 28683396]
[98]
Liu J, Li Q, Liu R, Yin Y, Chen X, Bi K. Enrichment and purification of six Aconitum alkaloids from Aconiti kusnezoffii radix by macroporous resins and quantification by HPLC–MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960: 174-81.
[http://dx.doi.org/10.1016/j.jchromb.2014.04.034] [PMID: 24814003]
[99]
Zhen B, Chen X, Han D, Mao Z. An alternative method for the decoloration of ɛ-poly-l-lysine eluate by macroporous resin in the separation and purification of ɛ-poly-l-lysine from fermentation broth. Food Bioprod Process 2015; 95: 332-8.
[http://dx.doi.org/10.1016/j.fbp.2014.10.006]
[100]
Shi T, Wang Z, Liu Y, Jia S, Changming D. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J Hazard Mater 2009; 161(2-3): 900-6.
[http://dx.doi.org/10.1016/j.jhazmat.2008.04.041] [PMID: 18513867]
[101]
Ruiz MO, Escudero I, Isabel Horta A. Extraction equilibria of α -phenylglycine and aspartic acid with TOMAC-impregnated resins. Chem Eng Sci 2007; 62(10): 2737-49.
[http://dx.doi.org/10.1016/j.ces.2007.01.075]
[102]
Xiong N, Yu R, Chen T, Xue YP, Liu ZQ, Zheng YG. Separation and purification of l-methionine from E. coli fermentation broth by macroporous resin chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111: 108-15.
[http://dx.doi.org/10.1016/j.jchromb.2019.02.016] [PMID: 30798071]
[103]
Zhuang M, Zhao M, Lin L. et al. Macroporous resin purification of peptides with umami taste from soy sauce. Food Chem 2016; 190: 338-44.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.105] [PMID: 26212979]
[104]
Zhang F, Wang Z, Xu S. Macroporous resin purification of grass carp fish (Ctenopharyngodon idella) scale peptides with in vitro angiotensin-I converting enzyme (ACE) inhibitory ability. Food Chem 2009; 117(3): 387-92.
[http://dx.doi.org/10.1016/j.foodchem.2009.04.015]
[105]
Zhang Z, Wang F, Yang W, Yang Z, Li A. A comparative study on the adsorption of 8-amino-1-naphthol-3,6-disulfonic acid by a macroporous amination resin. Chem Eng J 2016; 283: 1522-33.
[http://dx.doi.org/10.1016/j.cej.2015.08.010]
[106]
Yang H, Zong X, Cui C, Mu L, Zhao H. Wheat gluten hydrolysates separated by macroporous resins enhance the stress tolerance in brewer’s yeast. Food Chem 2018; 268: 162-70.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.082] [PMID: 30064744]
[107]
Bu T, Zhou M, Zheng J. et al. Preparation and characterization of a low-phenylalanine whey hydrolysate using two-step enzymatic hydrolysis and macroporous resin adsorption. Lebensm Wiss Technol 2020; 132: 109753.
[http://dx.doi.org/10.1016/j.lwt.2020.109753]
[108]
Outinen M, Tossavainen O, Harju M, Syväoja E-L. A Chromatographic process for removing phenylalanine from enzymatic whey protein hydrolysate. J Dairy Sci 1995; 51(2): 24-36.
[109]
Delvivo FM. Michely Capobiango, Biasutti EA, Capobiango M, Silva VD, Afonso WO. Effect of adsorption medium, hydrolytic parameters and ultrafiltration on the phenylalanine removal from pancreatic whey hydrolysates. Am J Food Technol 2006; 1(2): 94-104.
[http://dx.doi.org/10.3923/ajft.2006.94.104]
[110]
Liu C, Jiao R, Yao L, Zhang Y, Lu Y, Tan R. Adsorption characteristics and preparative separation of chaetominine from Aspergillus fumigatus mycelia by macroporous resin. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1015-1016: 135-41.
[http://dx.doi.org/10.1016/j.jchromb.2016.02.027] [PMID: 26919448]
[111]
Lee H. Adsorption of plasma proteins onto PEGylated single-walled carbon nanotubes: The effects of protein shape, PEG size and grafting density. J Mol Graph Model 2017; 75: 1-8.
[http://dx.doi.org/10.1016/j.jmgm.2017.04.003] [PMID: 28501530]
[112]
Wang H, Huang C, Ma S, Bo C, Ou J, Gong B. Recent advances of restricted access molecularly imprinted materials and their applications in food and biological samples analysis. Trends Analyt Chem 2022; 147: 116526.
[http://dx.doi.org/10.1016/j.trac.2022.116526]
[113]
Cai T, Zhou Y, Liu H. et al. Preparation of monodisperse, restricted-access, media-molecularly imprinted polymers using bi-functional monomers for solid-phase extraction of sarafloxacin from complex samples. J Chromatogr A 2021; 1642: 462009.
[http://dx.doi.org/10.1016/j.chroma.2021.462009] [PMID: 33721811]
[114]
Cassiano NM, Lima VV, Oliveira RV, de Pietro AC, Cass QB. Development of restricted-access media supports and their application to the direct analysis of biological fluid samples via high-performance liquid chromatography. Anal Bioanal Chem 2006; 384(7-8): 1462-9.
[http://dx.doi.org/10.1007/s00216-005-0253-9] [PMID: 16800052]
[115]
Liu T, Lin DQ, Wu QC, Zhang QL, Wang CX, Yao SJ. A novel polymer-grafted hydrophobic charge-induction chromatographic resin for enhancing protein adsorption capacity. Chem Eng J 2016; 304: 251-8.
[http://dx.doi.org/10.1016/j.cej.2016.06.074]
[116]
Yoshida H, Morita I, Tamai G. et al. Some characteristics of a protein-coated ODS column and its use for the determination of drugs by the direct injection analysis of plasma samples. Chromatographia 1984; 19(1): 466-72.
[http://dx.doi.org/10.1007/BF02687789]
[117]
He J, Yuan J, Du J. et al. Automated on-line SPE determination of amisulpride in human plasma using LC coupled with restricted-access media column. Microchem J 2019; 145: 154-61.
[http://dx.doi.org/10.1016/j.microc.2018.10.029]
[118]
Wang Z, Bian L, Mo C, Kukula M, Schug KA, Brotto M. Targeted quantification of lipid mediators in skeletal muscles using restricted access media-based trap-and-elute liquid chromatography-mass spectrometry. Anal Chim Acta 2017; 984: 151-61.
[http://dx.doi.org/10.1016/j.aca.2017.07.024] [PMID: 28843558]
[119]
González-Ortega O, Porath J, Guzmán R. Adsorption of peptides and small proteins with control access polymer permeation to affinity binding sites. Part II: Polymer permeation-ion exchange separation adsorbents with polyethylene glycol and strong anion exchange groups. J Chromatogr A 2012; 1227: 126-37.
[http://dx.doi.org/10.1016/j.chroma.2011.12.092] [PMID: 22265175]
[120]
Haidar AIA, Bennett R, Makey D. et al. In silico method development for the reversed-phase liquid chromatography separation of proteins using chaotropic mobile phase modifiers. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173: 122587.
[http://dx.doi.org/10.1016/j.jchromb.2021.122587] [PMID: 33845343]
[121]
Lan Q, Wang Y. Carbonization of gradient phenolics filled in macroporous substrates for high-flux tight membranes: Toward ultrafiltration of polypeptides. J Membr Sci 2019; 590: 117309.
[http://dx.doi.org/10.1016/j.memsci.2019.117309]
[122]
Moreno-González M, Chuekitkumchorn P, Silva M, Groenewoud R, Ottens M. High throughput process development for the purification of rapeseed proteins napin and cruciferin by ion exchange chromatography. Food Bioprod Process 2021; 125: 228-41.
[http://dx.doi.org/10.1016/j.fbp.2020.11.011]
[123]
Yu H, Wang X, Xie J, Ai L, Chen C, Tian H. Isolation and identification of bitter-tasting peptides in Shaoxing rice wine using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with taste orientation strategy. J Chromatogr A 2022; 1676: 463193.
[http://dx.doi.org/10.1016/j.chroma.2022.463193] [PMID: 35709603]
[124]
Xu X, Xu R, Song Z. et al. Identification of umami-tasting peptides from Volvariella volvacea using ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry and sensory-guided separation techniques. J Chromatogr A 2019; 1596: 96-103.
[http://dx.doi.org/10.1016/j.chroma.2019.03.003] [PMID: 30871753]
[125]
Ständker L, Harvey AL, Fürst S. et al. Improved method for the isolation, characterization and examination of neuromuscular and toxic properties of selected polypeptide fractions from the crude venom of the Taiwan cobra Naja naja atra. Toxicon 2012; 60(4): 623-31.
[http://dx.doi.org/10.1016/j.toxicon.2012.05.013] [PMID: 22677803]
[126]
Tian S, Yu B, Du K, Li Y. Purification of wheat germ albumin hydrolysates by membrane separation and gel chromatography and evaluating their antioxidant activities. Lebensm Wiss Technol 2022; 161: 113365.
[http://dx.doi.org/10.1016/j.lwt.2022.113365]
[127]
Klaassen N, Spicer V, Krokhin OV. Universal retention standard for peptide separations using various modes of high-performance liquid chromatography. J Chromatogr A 2019; 1588: 163-8.
[http://dx.doi.org/10.1016/j.chroma.2018.12.057] [PMID: 30626502]
[128]
Molineau J, Hideux M, Hennig P. et al. Analysis of short-chain bioactive peptides by unified chromatography-electrospray ionization mass spectrometry. Part II. Comparison to reversed-phase ultra-high performance liquid chromatography. J Chromatogr A 2022; 1663: 462771.
[http://dx.doi.org/10.1016/j.chroma.2021.462771] [PMID: 34973481]
[129]
Karongo R, Ikegami T, Stoll DR, Lämmerhofer M. A selective comprehensive reversed-phase×reversed-phase 2D-liquid chromatography approach with multiple complementary detectors as advanced generic method for the quality control of synthetic and therapeutic peptides. J Chromatogr A 2020; 1627: 461430.
[http://dx.doi.org/10.1016/j.chroma.2020.461430] [PMID: 32823119]