Dietary Antioxidants and their Potential Role in Human Disease Management

Page: [262 - 281] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Reactive oxygen species (ROS) are usually destroyed by the antioxidant defence systems in our body. ROS in low concentrations may be beneficial or even indispensable for defence against microorganisms and in intracellular signaling, but its higher amounts can trigger negative chain reactions leading to various pathological conditions. A delicate balance between antioxidants and oxidants is maintained in healthy organisms and protection against the harmful effects of ROS is thus provided. The increase in ROS leading to oxidative stress plays a key role in the development of chronic diseases like cancer, diabetes, neurodegenerative, and cardiovascular diseases. Several non-enzymatic and enzymatic antioxidant activities exist as a safeguard against ROS accumulation. Imbalance between the oxidative stress and the antioxidant defence systems causes irreversible changes in cellular components and the normal cell signaling mechanisms are disrupted. The enzymatic and non-enzymatic antioxidant defences include catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), vitamin A, vitamin C (ascorbic acid), vitamin E (α-tocopherol), carotenes, flavonoids, etc. Several human pathologies have been known to be treated by the use of medicinal plants owing to their antioxidant properties. Dietary antioxidants such as vitamins, minerals, carotenes, and flavonoids, with their mechanisms of antioxidant defence are discussed in the review for the effective management of various human diseases.

Keywords: Free radicals, vitamins, minerals, carotenes, flavonoids, oxidative stress.

Graphical Abstract

[1]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[2]
Diplock AT. Antioxidant nutrients and disease prevention: an overview. Am J Clin Nutr 1991; 53(1) (Suppl.): 189S-93S.
[http://dx.doi.org/10.1093/ajcn/53.1.189Sb] [PMID: 1985386]
[3]
Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004; 52: 794-804.
[PMID: 15909857]
[4]
Bhogade RB, Suryakar AN, Joshi NG, Patil RY. Effect of vitamin E supplementation on oxidative stress in hemodialysis patients. Indian J Clin Biochem 2008; 23(3): 233-7.
[http://dx.doi.org/10.1007/s12291-008-0052-0] [PMID: 23105760]
[5]
Singh K, Pillai V, Marar T. Influence of Vitamin E on camptothecin induced oxidant injury: An in vitro study on erythrocytes. J Pharm Res 2012; 5(12): 3116-9.
[6]
Lei XG, Zhu JH, Cheng WH, et al. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications. Physiol Rev 2016; 96(1): 307-64.
[http://dx.doi.org/10.1152/physrev.00010.2014] [PMID: 26681794]
[7]
Matés JM, Pérez-Gómez C, Núñez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem 1999; 32(8): 595-603.
[http://dx.doi.org/10.1016/S0009-9120(99)00075-2] [PMID: 10638941]
[8]
Hu ML. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang Gung Med J 2011; 34(5): 449-60.
[PMID: 22035889]
[9]
Lee SE, Park YS. The emerging roles of antioxidant enzymes by dietary phytochemicals in vascular diseases. Life 2021; 11(3): 199.
[http://dx.doi.org/10.3390/life11030199] [PMID: 33806594]
[10]
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med 2017; 54(4): 287-93.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[11]
Abdalla DSP. Coronary heart disease | Antioxidant Status Ency Food Sci Nutr. New York: Academic Press 2003; pp. 1654-63.
[12]
Stylianopoulos C. Carbohydrates: Requirements and Dietary Importance Ency Hum Nutr. New York: Academic Press 2013; pp. 278-82.
[http://dx.doi.org/10.1016/B978-0-12-375083-9.00043-X]
[13]
Dwyer J. Dietary requirements of adults. Ency Food Sci Nutr 2003; pp. 1863-8.
[14]
Zhang T, Wang Z, Wang X, et al. Effects of vitamin A on antioxidant functions, immune functions, and production performance in male sika deer during the first antler growth period. Ital J Anim Sci 2019; 18(1): 98-104.
[http://dx.doi.org/10.1080/1828051X.2018.1456978]
[15]
Bates CJ, Vitamin A. Lancet 1995; 345(8941): 31-5.
[http://dx.doi.org/10.1016/S0140-6736(95)91157-X] [PMID: 7799706]
[16]
Padayatty SJ, Katz A, Wang Y, et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J Am Coll Nutr 2003; 22(1): 18-35.
[http://dx.doi.org/10.1080/07315724.2003.10719272] [PMID: 12569111]
[17]
Shah AA, Khan MS, Khan S, et al. Effect of different levels of alpha tocopherol on performance traits, serum antioxidant enzymes, and trace elements in Japanese quail (coturnix japonica) under low ambient temperature. Rev Bras Zootec 2016; 45(10): 622-6.
[http://dx.doi.org/10.1590/S1806-92902016001000007]
[18]
Dhanesha M, Singh K, Bhori M, Marar T. Impact of antioxidant supplementation on toxicity of methotrexate: An in vitro study on erythrocytes using vitamin E. Asian J Pharm Clin Res 2015; 8(3): 339-43.
[19]
Abd Hamid NA, Hasrul MA, Ruzanna RJ, et al. Effect of vitamin E (Tri E®) on antioxidant enzymes and DNA damage in rats following eight weeks exercise. Nutr J 2011; 10: 37.
[http://dx.doi.org/10.1186/1475-2891-10-37] [PMID: 21513540]
[20]
Eder K, Flader D, Hirche F, Brandsch C. Excess dietary vitamin E lowers the activities of antioxidative enzymes in erythrocytes of rats fed salmon oil. J Nutr 2002; 132(11): 3400-4.
[http://dx.doi.org/10.1093/jn/132.11.3400] [PMID: 12421858]
[21]
Van den Branden C, Deman A, Ceyssens B, Pauwels M, Empsen C, Verbeelen D. Vitamin E protects renal antioxidant enzymes and attenuates glomerulosclerosis in Adriamycin-treated rats. Nephron J 2002; 91(1): 129-33.
[http://dx.doi.org/10.1159/000057614] [PMID: 12021529]
[22]
Giray B, Kan E, Bali M, Hincal F, Basaran N. The effect of vitamin E supplementation on antioxidant enzyme activities and lipid peroxidation levels in hemodialysis patients. Clin Chim Acta 2003; 338(1-2): 91-8.
[http://dx.doi.org/10.1016/j.cccn.2003.07.020] [PMID: 14637272]
[23]
Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ. Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 2014; 69: 148-58.
[http://dx.doi.org/10.1016/j.envint.2014.04.019] [PMID: 24853282]
[24]
Coskun M, Kayis T, Gulsu E, Alp E. Effects of selenium and vitamin E on enzymatic, biochemical, and immunological biomarkers in Galleria mellonella L. Sci Rep 2020; 10(1): 9953.
[http://dx.doi.org/10.1038/s41598-020-67072-9] [PMID: 32561808]
[25]
El-Demerdash FM. Antioxidant effect of vitamin E and selenium on lipid peroxidation, enzyme activities and biochemical parameters in rats exposed to aluminium. J Trace Elem Med Biol 2004; 18(1): 113-21.
[http://dx.doi.org/10.1016/j.jtemb.2004.04.001] [PMID: 15487771]
[26]
Ozkan A, Fiskin K, Ayhan AG. Effect of vitamin E and selenium on antioxidant enzymes in brain, kidney and liver of cigarette smoke-exposed mice. Biologia 2007; 62(3): 360-4.
[http://dx.doi.org/10.2478/s11756-007-0060-1]
[27]
Prasad AS, Bao B, Beck FWJ, Kucuk O, Sarkar FH. Antioxidant effect of zinc in humans. Free Radic Biol Med 2004; 37(8): 1182-90.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.07.007] [PMID: 15451058]
[28]
Powell SR. The antioxidant properties of zinc. J Nutr 2000; 130(5S) (Suppl.): 1447S-54S.
[http://dx.doi.org/10.1093/jn/130.5.1447S] [PMID: 10801958]
[29]
Mazani M, Argani H, Rashtchizadeh N, et al. Effects of zinc supplementation on antioxidant status and lipid peroxidation in hemodialysis patients. J Ren Nutr 2013; 23(3): 180-4.
[http://dx.doi.org/10.1053/j.jrn.2012.08.012] [PMID: 23140661]
[30]
Zago MP, Oteiza PI. The antioxidant properties of zinc: Interactions with iron and antioxidants. Free Radic Biol Med 2001; 31(2): 266-74.
[http://dx.doi.org/10.1016/S0891-5849(01)00583-4] [PMID: 11440839]
[31]
Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol 2008; 43(5): 370-7.
[http://dx.doi.org/10.1016/j.exger.2007.10.013] [PMID: 18054190]
[32]
Čobanová K, Váradyová Z, Grešáková Ľ, Kucková K, Mravčáková D, Várady M. Does herbal and/or zinc dietary supplementation improve the antioxidant and mineral status of lambs with parasite infection? Antioxidants 2020; 9(12): 1172.
[http://dx.doi.org/10.3390/antiox9121172] [PMID: 33255492]
[33]
El-Bahr SM, Shousha S, Albokhadaim I, et al. Impact of dietary zinc oxide nanoparticles on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. BMC Vet Res 2020; 16(1): 349.
[http://dx.doi.org/10.1186/s12917-020-02482-5] [PMID: 32967666]
[34]
Young AJ, Lowe GM. Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 2001; 385(1): 20-7.
[http://dx.doi.org/10.1006/abbi.2000.2149] [PMID: 11361018]
[35]
Clark S. Beta Carotene, in xPharm: The comprehensive pharmacology reference Elsevier. Publications 2007.
[http://dx.doi.org/10.1016/B978-008055232-3.61302-9]
[36]
Tanumihardjo SA. Carotenoids: Health Effects Ency Hum Nutr. New York: Academic Press 2013; pp. 292-7.
[http://dx.doi.org/10.1016/B978-0-12-375083-9.00045-3]
[37]
Baliga MS, Shivashankara AR, Venkatesh S, et al. Phytochemicals in the prevention of ethanol-induced hepatotoxicity Dietary Interventions in Liver Disease. New York: Academic Press 2019; pp. 79-89.
[http://dx.doi.org/10.1016/B978-0-12-814466-4.00007-0]
[38]
Naves MMV, Moreno FS. β-Carotene and cancer chemoprevention: From epidemiological associations to cellular mechanisms of action. Nutr Res 1998; 18(10): 1807-24.
[http://dx.doi.org/10.1016/S0271-5317(98)00137-7]
[39]
Tsuchihashi H, Kigoshi M, Iwatsuki M, Niki E. Action of β-carotene as an antioxidant against lipid peroxidation. Arch Biochem Biophys 1995; 323(1): 137-47.
[http://dx.doi.org/10.1006/abbi.1995.0019] [PMID: 7487059]
[40]
Gore DLM, Lehloenya KC. β-carotene supplementation increases progesterone concentration and glutathione peroxidase activity following alternative progesterone primed oestrous synchronization protocol in goats. Am J Anim Vet Sci 2020; 15(3): 211-9.
[http://dx.doi.org/10.3844/ajavsp.2020.211.219]
[41]
Kasperczyk S, Dobrakowski M, Kasperczyk J. Ostałowska A, Zalejska-Fiolka J, Birkner E. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers. Toxicol Appl Pharmacol 2014; 280(1): 36-41.
[http://dx.doi.org/10.1016/j.taap.2014.07.006] [PMID: 25038314]
[42]
Tauler P, Aguiló A, Fuentespina E, Tur JA, Pons A. Diet supplementation with vitamin E, vitamin C and β-carotene cocktail enhances basal neutrophil antioxidant enzymes in athletes. Pflugers Arch 2002; 443(5-6): 791-7.
[http://dx.doi.org/10.1007/s00424-001-0770-0] [PMID: 11889577]
[43]
Imran M, Ghorat F, Ul-Haq I, et al. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants 2000; 9(8): 706.
[http://dx.doi.org/10.3390/antiox9080706]
[44]
Holzapfel NP, Shokoohmand A, Wagner F, et al. Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load. Am J Cancer Res 2017; 7(6): 1322-36.
[PMID: 28670494]
[45]
Ozmen O, Topsakal S, Haligur M, Aydogan A, Dincoglu D. Effects of caffeine and lycopene in experimentally induced diabetes mellitus. Pancreas 2016; 45(4): 579-83.
[http://dx.doi.org/10.1097/MPA.0000000000000489] [PMID: 26418913]
[46]
Choi SK, Seo JS. Lycopene supplementation suppresses oxidative stress induced by a high fat diet in gerbils. Nutr Res Pract 2013; 7(1): 26-33.
[http://dx.doi.org/10.4162/nrp.2013.7.1.26] [PMID: 23423845]
[47]
Ozawa Y, Sasaki M. Lutein and oxidative stress-mediated retinal neurodegeneration in diabetes diabetes: oxidative stress and dietary antioxidants. 2014; pp. 223-9.
[48]
Gordon MH. Significance of dietary antioxidants for health. Int J Mol Sci 2012; 13(1): 173-9.
[http://dx.doi.org/10.3390/ijms13010173] [PMID: 22312245]
[49]
Kumar V, Khan AA, Tripathi A, Dixit PK, Bajaj UK. Role of oxidative stress in various diseases: Relevance of dietary antioxidants. J Phytopharm 2015; 4(2): 126-32.
[http://dx.doi.org/10.31254/phyto.2015.4213]
[50]
Lesjak M, Beara I, Simin N, et al. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J Funct Foods 2018; 40: 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[51]
Nishimura Fde C, de Almeida AC, Ratti BA, et al. Antioxidant effects of quercetin and naringenin are associated with impaired neutrophil microbicidal activity. Evid Based Complement Alternat Med 2013; 2013: 795916.
[http://dx.doi.org/10.1155/2013/795916] [PMID: 23970936]
[52]
Song Y, Liu J, Zhang F, Zhang J, Shi T, Zeng Z. Antioxidant effect of quercetin against acute spinal cord injury in rats and its correlation with the p38MAPK/iNOS signaling pathway. Life Sci 2013; 92(24-26): 1215-21.
[http://dx.doi.org/10.1016/j.lfs.2013.05.007] [PMID: 23688865]
[53]
Chen H, Lu C, Liu H, et al. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. Int Immunopharmacol 2017; 48: 110-7.
[http://dx.doi.org/10.1016/j.intimp.2017.04.022] [PMID: 28499194]
[54]
Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019; 24(6): 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[55]
Yao Z, Gu Y, Zhang Q, et al. Estimated daily quercetin intake and association with the prevalence of type 2 diabetes mellitus in Chinese adults. Eur J Nutr 2019; 58(2): 819-30.
[http://dx.doi.org/10.1007/s00394-018-1713-2] [PMID: 29754250]
[56]
Tejada S, Pinya S, Martorell M, et al. Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr Med Chem 2018; 25(37): 4929-45.
[http://dx.doi.org/10.2174/0929867324666170718104412] [PMID: 28721824]
[57]
Akdemir F, Gülçin İ, Karagöz B, Soslu R, Alwasel S. A comparative study on the antioxidant effects of hesperidin and ellagic acid against skeletal muscle ischemia/reperfusion injury. J Enzyme Inhib Med Chem 2016; 31 (sup 4): 114-8.
[58]
Ashafaq M, Varshney L, Khan MH, et al. Neuromodulatory effects of hesperidin in mitigating oxidative stress in streptozotocin induced diabetes. BioMed Res Int 2014; 2014: 249031.
[http://dx.doi.org/10.1155/2014/249031] [PMID: 25050332]
[59]
Kuzu M, Kandemir FM. Yıldırım S, Çağlayan C, Küçükler S. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. Environ Sci Pollut Res Int 2021; 28(9): 10818-31.
[http://dx.doi.org/10.1007/s11356-020-11327-5] [PMID: 33099738]
[60]
Chen M, Gu H, Ye Y, et al. Protective effects of hesperidin against oxidative stress of tert-butyl hydroperoxide in human hepatocytes. Food Chem Toxicol 2010; 48(10): 2980-7.
[http://dx.doi.org/10.1016/j.fct.2010.07.037] [PMID: 20678535]
[61]
Sharma A, Bhardwaj P, Arya SK. Naringin: A potential natural product in the field of biomedical applications. Carbohydrate Polymer Technologies and Applications 2021; 2: 100068.
[http://dx.doi.org/10.1016/j.carpta.2021.100068]
[62]
Jeon SM, Kim HK, Kim HJ, et al. Hypocholesterolemic and antioxidative effects of naringenin and its two metabolites in high-cholesterol fed rats. Transl Res 2007; 149(1): 15-21.
[http://dx.doi.org/10.1016/j.trsl.2006.08.001] [PMID: 17196518]
[63]
Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol 2018; 24(16): 1679-707.
[http://dx.doi.org/10.3748/wjg.v24.i16.1679] [PMID: 29713125]
[64]
Wang K, Chen Z, Huang L, et al. Naringenin reduces oxidative stress and improves mitochondrial dysfunction via activation of the Nrf2/ARE signaling pathway in neurons. Int J Mol Med 2017; 40(5): 1582-90.
[http://dx.doi.org/10.3892/ijmm.2017.3134] [PMID: 28949376]
[65]
Wang J, Yang Z, Lin L, Zhao Z, Liu Z, Liu X. Protective effect of naringenin against lead-induced oxidative stress in rats. Biol Trace Elem Res 2012; 146(3): 354-9.
[http://dx.doi.org/10.1007/s12011-011-9268-6] [PMID: 22109809]
[66]
Yonekura L, Martins CA, Sampaio GR, et al. Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food Funct 2016; 7(7): 2970-8.
[http://dx.doi.org/10.1039/C6FO00513F] [PMID: 27302304]
[67]
Parvez S, Tabassum H, Rehman H, Banerjee BD, Athar M, Raisuddin S. Catechin prevents tamoxifen-induced oxidative stress and biochemical perturbations in mice. Toxicology 2006; 225(2-3): 109-18.
[http://dx.doi.org/10.1016/j.tox.2006.05.009] [PMID: 16797820]
[68]
Huang Q, Wu LJ, Tashiro S, Onodera S, Ikejima T. Elevated levels of DNA repair enzymes and antioxidative enzymes by (+)-catechin in murine microglia cells after oxidative stress. J Asian Nat Prod Res 2006; 8(1-2): 61-71.
[http://dx.doi.org/10.1080/10286020500209087] [PMID: 16753784]
[69]
Agarwal A, Prasad R, Jain A. Effect of green tea extract (catechins) in reducing oxidative stress seen in patients of pulmonary tuberculosis on DOTS Cat I regimen. Phytomedicine 2010; 17(1): 23-7.
[http://dx.doi.org/10.1016/j.phymed.2009.10.019] [PMID: 19910173]
[70]
Singh D, Chander V, Chopra K. Protective effect of catechin on ischemia-reperfusion-induced renal injury in rats. Pharmacol Rep 2005; 57(1): 70-6.
[PMID: 15849379]
[71]
Jeon SE, Choi-Kwon S, Park KA, et al. Dietary supplementation of (+)-catechin protects against UVB-induced skin damage by modulating antioxidant enzyme activities. Photodermatol Photoimmunol Photomed 2003; 19(5): 235-41.
[http://dx.doi.org/10.1034/j.1600-0781.2003.00052.x] [PMID: 14535894]
[72]
Li CY, Xu HD, Zhao BT, Chang HI, Rhee HI. Gastroprotective effect of cyanidin 3-glucoside on ethanol-induced gastric lesions in rats. Alcohol 2008; 42(8): 683-7.
[http://dx.doi.org/10.1016/j.alcohol.2008.08.009] [PMID: 19038699]
[73]
Yu L, Zhang S, Zhao X, et al. Cyanidin-3-glucoside protects liver from oxidative damage through AMPK/Nrf2 mediated signaling pathway in vivo and in vitro. J Funct Foods 2020; 73: 104148.
[http://dx.doi.org/10.1016/j.jff.2020.104148]
[74]
Pantan R, Tocharus J, Suksamrarn A, Tocharus C. Synergistic effect of atorvastatin and Cyanidin-3-glucoside on angiotensin II-induced inflammation in vascular smooth muscle cells. Exp Cell Res 2016; 342(2): 104-12.
[http://dx.doi.org/10.1016/j.yexcr.2016.02.017] [PMID: 26957227]
[75]
Park CE, Yun H, Lee EB, et al. The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J Med Food 2010; 13(4): 815-20.
[http://dx.doi.org/10.1089/jmf.2009.1359] [PMID: 20673057]
[76]
Tuli HS, Tuorkey MJ, Thakral F, et al. Molecular mechanisms of action of genistein in cancer: Recent advances. Front Pharmacol 2019; 10: 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[77]
Wei H, Bowen R, Cai Q, Barnes S, Wang Y. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc Soc Exp Biol Med 1995; 208(1): 124-30.
[http://dx.doi.org/10.3181/00379727-208-43844] [PMID: 7892286]
[78]
Rahman Mazumder MA, Hongsprabhas P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: A review. Biomed Pharmacother 2016; 82: 379-92.
[http://dx.doi.org/10.1016/j.biopha.2016.05.023] [PMID: 27470376]
[79]
Borrás C, Gambini J, Gómez-Cabrera MC, et al. Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: Involvement of estrogen receptors, ERK1/2, and NFkappaB. FASEB J 2006; 20(12): 2136-8.
[http://dx.doi.org/10.1096/fj.05-5522fje] [PMID: 16966488]
[80]
Choi C, Cho H, Park J, Cho C, Song Y. Suppressive effects of genistein on oxidative stress and NFkappaB activation in RAW 264.7 macrophages. Biosci Biotechnol Biochem 2003; 67(9): 1916-22.
[http://dx.doi.org/10.1271/bbb.67.1916] [PMID: 14519976]
[81]
Javani G, Alihemmati A, Habibi P, et al. The effects of genistein on renal oxidative stress and inflammation of ovariectomized rats. Jundishapur J Nat Pharm Prod 2019; 14(4): e57149.
[http://dx.doi.org/10.5812/jjnpp.57149]
[82]
Al-Juhaimi F, Ghafoor K, Özcan MM, et al. Effect of various food processing and handling methods on preservation of natural antioxidants in fruits and vegetables. J Food Sci Technol 2018; 55(10): 3872-80.
[http://dx.doi.org/10.1007/s13197-018-3370-0] [PMID: 30228385]
[83]
Bereket A. Effect of processing methods on nutritional and physico-chemical composition of fish: A review. MOJ food process technol 2018; 6: 376-82.
[84]
Reddy MB, Love M. The impact of food processing on the nutritional quality of vitamins and minerals. Adv Exp Med Biol 1999; 459: 99-106.
[http://dx.doi.org/10.1007/978-1-4615-4853-9_7] [PMID: 10335371]
[85]
Kopec RE, Failla ML. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. J Food Compos Anal 2018; 68: 16-30.
[http://dx.doi.org/10.1016/j.jfca.2017.06.008]
[86]
Cilla A, Barberá R, López-García G, Blanco-Morales V, Alegría A, Garcia-Llatas G. Impact of processing on mineral bioaccessibility/bioavailability Innovative thermal and non-thermal processing, bioaccessibility and bioavailability of nutrients and bioactive compounds. India: Woodhead Publishing 2019; pp. 209-39.
[http://dx.doi.org/10.1016/B978-0-12-814174-8.00007-X]
[87]
Khanam A, Platel K. Influence of domestic processing on the bioaccessibility of selenium from selected food grains and composite meals. J Food Sci Technol 2016; 53(3): 1634-9.
[http://dx.doi.org/10.1007/s13197-015-2075-x] [PMID: 27570288]
[88]
Funes-Collado V, Rubio R, López-Sánchez JF. Does boiling affect the bioaccessibility of selenium from cabbage? Food Chem 2015; 181: 304-9.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.052] [PMID: 25794754]
[89]
Nayak B, Liu RH, Tang J. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains--a review. Crit Rev Food Sci Nutr 2015; 55(7): 887-919.
[http://dx.doi.org/10.1080/10408398.2011.654142] [PMID: 24915381]
[90]
Yao LH, Jiang YM, Shi J, et al. Flavonoids in food and their health benefits. Plant Foods Hum Nutr 2004; 59(3): 113-22.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[91]
Hajhashemi V, Vaseghi G, Pourfarzam M, Abdollahi A. Are antioxidants helpful for disease prevention? Res Pharm Sci 2010; 5(1): 1-8.
[PMID: 21589762]
[92]
Park S, Ahn S, Shin Y, Yang Y, Yeom CH. Vitamin C in Cancer: A metabolomics perspective. Front Physiol 2018; 9: 762.
[http://dx.doi.org/10.3389/fphys.2018.00762] [PMID: 29971019]
[93]
Gul K, Tak A, Singh AK, Singh P, Yousuf B, Wani AA. Chemistry, encapsulation, and health benefits of β-carotene - A review. Cogent Food Agric 2015; 1(1): 1018696.
[http://dx.doi.org/10.1080/23311932.2015.1018696]
[94]
Epstein KR. The role of carotenoids on the risk of lung cancer. Semin Oncol 2003; 30(1): 86-93.
[http://dx.doi.org/10.1053/sonc.2003.50020] [PMID: 12635093]
[95]
Agarwal S, Rao AV. Tomato lycopene and its role in human health and chronic diseases. CMAJ 2000; 163(6): 739-44.
[PMID: 11022591]
[96]
Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 2002; 132(3): 518S-24S.
[http://dx.doi.org/10.1093/jn/132.3.518S] [PMID: 11880585]
[97]
Ribaya-Mercado JD, Blumberg JB. Lutein and zeaxanthin and their potential roles in disease prevention. J Am Coll Nutr 2004; 23(6) (Suppl.): 567S-87S.
[http://dx.doi.org/10.1080/07315724.2004.10719427] [PMID: 15640510]
[98]
Omoni AO, Aluko RE. Soybean foods and their benefits: Potential mechanisms of action. Nutr Rev 2005; 63(8): 272-83.
[http://dx.doi.org/10.1111/j.1753-4887.2005.tb00141.x] [PMID: 16190314]
[99]
Venkateswara Rao P, Kiran SDVS, Rohini P, Bhagyasree P. Flavonoid: A review on Naringenin. J Pharmacogn Phytochem 2017; 6(5): 2778-83.
[100]
Zaidun NH, Thent ZC, Latiff AA. Combating oxidative stress disorders with citrus flavonoid. Naringenin Life Sci 2018; 208: 111-22.
[http://dx.doi.org/10.1016/j.lfs.2018.07.017] [PMID: 30021118]
[101]
Kale A, Gawande S, Kotwal S. Cancer phytotherapeutics: Role for flavonoids at the cellular level. Phytother Res 2008; 22(5): 567-77.
[http://dx.doi.org/10.1002/ptr.2283] [PMID: 18398903]
[102]
Spagnuolo C, Russo GL, Orhan IE, et al. Genistein and cancer: current status, challenges, and future directions. Adv Nutr 2015; 6(4): 408-19.
[http://dx.doi.org/10.3945/an.114.008052] [PMID: 26178025]
[103]
Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 1993; 328(20): 1444-9.
[http://dx.doi.org/10.1056/NEJM199305203282003] [PMID: 8479463]
[104]
Debreceni B, Debreceni L. Role of vitamins in cardiovascular health and disease. Res rep clin cardiol 2014; 5: 283-95.
[105]
Kumar CT, Reddy VK, Prasad M, Thyagaraju K, Reddanna P. Dietary supplementation of vitamin E protects heart tissue from exercise-induced oxidant stress. Mol Cell Biochem 1992; 111(1-2): 109-15.
[http://dx.doi.org/10.1007/BF00229581] [PMID: 1588932]
[106]
Huang Y, Chen H, Su Y, Liu H, Hu J, Hong K. Increased blood alpha-carotene, all-trans-Beta-carotene and lycopene levels are associated with beneficial changes in heart rate variability: A CVD-stratified analysis in an adult population-based study. Nutr J 2021; 20(1): 43.
[http://dx.doi.org/10.1186/s12937-021-00700-w] [PMID: 33971890]
[107]
Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL. Zinc and cardiovascular disease. Nutrition 2010; 26(11-12): 1050-7.
[http://dx.doi.org/10.1016/j.nut.2010.03.007] [PMID: 20950764]
[108]
Xu J, Hu H, Chen B, et al. Lycopene protects against hypoxia/reoxygenation injury by alleviating ER stress induced apoptosis in neonatal mouse cardiomyocytes. PLoS One 2015; 10(8): e0136443.
[http://dx.doi.org/10.1371/journal.pone.0136443] [PMID: 26291709]
[109]
Prasad AS. Zinc: An antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. J Trace Elem Med Biol 2014; 28(4): 364-71.
[http://dx.doi.org/10.1016/j.jtemb.2014.07.019] [PMID: 25200490]
[110]
Mozos I, Stoian D, Caraba A, Malainer C. Horbańczuk JO, Atanasov AG. Lycopene and vascular health. Front Pharmacol 2018; 9: 521.
[http://dx.doi.org/10.3389/fphar.2018.00521] [PMID: 29875663]
[111]
Keen MA, Hassan I. Vitamin E in dermatology. Indian Dermatol Online J 2016; 7(4): 311-5.
[http://dx.doi.org/10.4103/2229-5178.185494] [PMID: 27559512]
[112]
Cai Z, Zhang J, Li H. Selenium, aging and aging-related diseases. Aging Clin Exp Res 2019; 31(8): 1035-47.
[http://dx.doi.org/10.1007/s40520-018-1086-7] [PMID: 30511318]
[113]
Cabrera AJR. Zinc, aging, and immunosenescence: An overview. Pathobiol Aging Age Relat Dis 2015; 5: 25592.
[http://dx.doi.org/10.3402/pba.v5.25592] [PMID: 25661703]
[114]
Darvin ME, Sterry W, Lademann J, Vergou T. The role of carotenoids in human skin. Molecules 2011; 16(12): 10491-506.
[http://dx.doi.org/10.3390/molecules161210491]
[115]
Man MQ, Yang B, Elias PM. Benefits of hesperidin for cutaneous functions. Evid Based Complement Alternat Med 2019; 2019: 2676307.
[http://dx.doi.org/10.1155/2019/2676307] [PMID: 31061668]
[116]
Gugliandolo A, Bramanti P, Mazzon E. Role of vitamin E in the treatment of Alzheimer’s disease: Evidence from animal models. Int J Mol Sci 2017; 18(12): 2504.
[http://dx.doi.org/10.3390/ijms18122504] [PMID: 29168797]
[117]
Zuniga KE, Bishop NJ, Turner AS. Dietary lutein and zeaxanthin are associated with working memory in an older population. Public Health Nutr 2021; 24(7): 1708-15.
[http://dx.doi.org/10.1017/S1368980019005020] [PMID: 32349832]
[118]
Sandhir R, Mehrotra A, Kamboj SS. Lycopene prevents 3-nitropropionic acid-induced mitochondrial oxidative stress and dysfunctions in nervous system. Neurochem Int 2010; 57(5): 579-87.
[http://dx.doi.org/10.1016/j.neuint.2010.07.005] [PMID: 20643176]
[119]
Keli SO, Hertog MG, Feskens EJ, Kromhout D. Dietary flavonoids, antioxidant vitamins, and incidence of stroke: The Zutphen study. Arch Intern Med 1996; 156(6): 637-42.
[http://dx.doi.org/10.1001/archinte.1996.00440060059007] [PMID: 8629875]
[120]
Mahmoudabadi MM, Rahbar AR. Effect of EPA and vitamin C on superoxide dismutase, glutathione peroxidase, total antioxidant capacity and malondialdehyde in type 2 diabetic patients. Oman Med J 2014; 29(1): 39-45.
[http://dx.doi.org/10.5001/omj.2014.09] [PMID: 24498481]
[121]
Kathore V, Shete AN, Zingade US, Bansode DG. The effect of vitamin C on serum superoxide dismutase and blood sugar levels in the patients of type 2 diabetes mellitus. Int J Health Sci 2014; 4(10): 94-100.
[122]
Sluijs I, Cadier E, Beulens JW. van der A DL, Spijkerman AM, van der Schouw YT. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr Metab Cardiovasc Dis 2015; 25(4): 376-81.
[http://dx.doi.org/10.1016/j.numecd.2014.12.008] [PMID: 25716098]
[123]
Cruz KJ, de Oliveira AR, Marreiro Ddo N. Antioxidant role of zinc in diabetes mellitus. World J Diabetes 2015; 6(2): 333-7.
[http://dx.doi.org/10.4239/wjd.v6.i2.333] [PMID: 25789115]
[124]
Tsuda T. Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants 2016; 5(2): 13.
[http://dx.doi.org/10.3390/antiox5020013] [PMID: 27058561]
[125]
Wojnar W, Zych M, Kaczmarczyk-Sedlak I. Antioxidative effect of flavonoid naringenin in the lenses of type 1 diabetic rats. Biomed Pharmacother 2018; 108: 974-84.
[http://dx.doi.org/10.1016/j.biopha.2018.09.092] [PMID: 30372909]
[126]
Buscemi S, Corleo D, Di Pace F, Petroni ML, Satriano A, Marchesini G. The Effect of lutein on eye and extra eye health. Nutrients 2018; 10(9): 1321.
[http://dx.doi.org/10.3390/nu10091321] [PMID: 30231532]
[127]
Christen WG Jr. Antioxidants and eye disease. Am J Med 1994; 97(3A): 14S-7S.
[http://dx.doi.org/10.1016/0002-9343(94)90293-3] [PMID: 8085581]
[128]
Abdel-Aal SM, Akhtar H, Zaheer K, Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 2013; 5(4): 1169-85.
[http://dx.doi.org/10.3390/nu5041169] [PMID: 23571649]
[129]
Almasaudi SB, El-Shitany NA, Abbas AT, et al. Antioxidant, anti-inflammatory and antiulcer potential of manuka honey against gastric ulcers in rats. Oxid Med Cell Longev 2016; 2016: 3643824.
[http://dx.doi.org/10.1155/2016/3643824] [PMID: 26770649]
[130]
Repetto MG, Llesuy SF. Antioxidant properties of natural compounds used in popular medicine for gastric ulcers. Braz J Med Biol Res 2002; 35(5): 523-34.
[http://dx.doi.org/10.1590/S0100-879X2002000500003] [PMID: 12011936]
[131]
Masri OA, Chalhoub JM, Sharara AI. Role of vitamins in gastrointestinal diseases. World J Gastroenterol 2015; 21(17): 5191-209.
[http://dx.doi.org/10.3748/wjg.v21.i17.5191] [PMID: 25954093]
[132]
Rannem T, Ladefoged K, Hylander E, Hegnhøj J, Staun M. Selenium depletion in patients with gastrointestinal diseases: Are there any predictive factors? Scand J Gastroenterol 1998; 33(10): 1057-61.
[http://dx.doi.org/10.1080/003655298750026750] [PMID: 9829360]
[133]
Skrovanek S, DiGuilio K, Bailey R, et al. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol 2014; 5(4): 496-513.
[http://dx.doi.org/10.4291/wjgp.v5.i4.496] [PMID: 25400994]
[134]
Estruel-Amades S, Massot-Cladera M, Pérez-Cano FJ, Franch À, Castell M, Camps-Bossacoma M. Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats. Nutrients 2019; 11(2): 324.
[http://dx.doi.org/10.3390/nu11020324] [PMID: 30717392]
[135]
Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Curr Drug Targets Inflamm Allergy 2005; 4(4): 517-9.
[http://dx.doi.org/10.2174/1568010054526386] [PMID: 16127829]
[136]
Rezaei S, Aryan Z, Rezaei N, Mahmoudi M. Vitamins and Allergic Asthma Nutrition and Immunity. Cham: Springer 2019; pp. 323-45.
[http://dx.doi.org/10.1007/978-3-030-16073-9_15]
[137]
Hoffmann PR. Selenium and asthma: A complex relationship. Allergy 2008; 63(7): 854-6.
[http://dx.doi.org/10.1111/j.1398-9995.2008.01676.x] [PMID: 18588550]
[138]
Tanaka T, Takahashi R. Flavonoids and asthma. Nutrients 2013; 5(6): 2128-43.
[http://dx.doi.org/10.3390/nu5062128] [PMID: 23752494]
[139]
Kalhan R, Smith LJ, Nlend MC, Nair A, Hixon JL, Sporn PHS. A mechanism of benefit of soy genistein in asthma: Inhibition of eosinophil p38-dependent leukotriene synthesis. Clin Exp Allergy 2008; 38(1): 103-12.
[PMID: 17979994]
[140]
Verma P, Mishra S. Antioxidants and disease prevention. Int J Adv Sci Tech Res 2014; 2(4): 903-11.
[141]
Lewis ED, Meydani SN, Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life 2019; 71(4): 487-94.
[http://dx.doi.org/10.1002/iub.1976] [PMID: 30501009]
[142]
Lee GY, Han SN. The role of vitamin E in immunity. Nutrients 2018; 10(11): 1614.
[http://dx.doi.org/10.3390/nu10111614] [PMID: 30388871]
[143]
Kim JK, Park SU. Current results on the potential health benefits of lutein. EXCLI J 2016; 15: 308-14.
[PMID: 27298616]
[144]
Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits. Antioxidants 2020; 9(8): 742.
[http://dx.doi.org/10.3390/antiox9080742] [PMID: 32823497]
[145]
Fan FY, Sang LX, Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules 2017; 22(3): 484.
[http://dx.doi.org/10.3390/molecules22030484] [PMID: 28335502]
[146]
Thielecke F, Boschmann M. The potential role of green tea catechins in the prevention of the metabolic syndrome - a review. Phytochemistry 2009; 70(1): 11-24.
[http://dx.doi.org/10.1016/j.phytochem.2008.11.011] [PMID: 19147161]
[147]
Gerin F, Sener U, Erman H, et al. The effects of quercetin on acute lung injury and biomarkers of inflammation and oxidative stress in the rat model of sepsis. Inflammation 2016; 39(2): 700-5.
[http://dx.doi.org/10.1007/s10753-015-0296-9] [PMID: 26670180]
[148]
Haidari F, Heybar H, Jalali MT, Ahmadi Engali K, Helli B, Shirbeigi E. Hesperidin supplementation modulates inflammatory responses following myocardial infarction. J Am Coll Nutr 2015; 34(3): 205-11.
[http://dx.doi.org/10.1080/07315724.2014.891269] [PMID: 25757593]
[149]
Li S, Tan HY, Wang N, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 2015; 16(11): 26087-124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[150]
El Hadi H, Vettor R, Rossato M. Vitamin E as a treatment for nonalcoholic fatty liver disease: Reality or myth? Antioxidants 2018; 7(1): 12.
[http://dx.doi.org/10.3390/antiox7010012] [PMID: 29337849]
[151]
Tain YL, Freshour G, Dikalova A, Griendling K, Baylis C. Vitamin E reduces glomerulosclerosis, restores renal neuronal NOS, and suppresses oxidative stress in the 5/6 nephrectomized rat. Am J Physiol Renal Physiol 2007; 292(5): F1404-10.
[http://dx.doi.org/10.1152/ajprenal.00260.2006] [PMID: 17200156]
[152]
Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 2012; 17(4): 311-21.
[http://dx.doi.org/10.1111/j.1440-1797.2012.01572.x] [PMID: 22288610]
[153]
Mohd Mutalip SS, Ab-Rahim S, Rajikin MH. Vitamin E as an antioxidant in female reproductive health. Antioxidants 2018; 7(2): 22.
[http://dx.doi.org/10.3390/antiox7020022] [PMID: 29373543]
[154]
Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters: An evidence based review. Int J Reprod Biomed 2016; 14(12): 729-36.
[http://dx.doi.org/10.29252/ijrm.14.12.729] [PMID: 28066832]
[155]
Pieczyńska J, Grajeta H. The role of selenium in human conception and pregnancy. J Trace Elem Med Biol 2015; 29: 31-8.
[http://dx.doi.org/10.1016/j.jtemb.2014.07.003] [PMID: 25175508]
[156]
Grieger JA, Grzeskowiak LE, Wilson RL, et al. Maternal selenium, copper and zinc concentrations in early pregnancy, and the association with fertility. Nutrients 2019; 11(7): 1609.
[http://dx.doi.org/10.3390/nu11071609] [PMID: 31315178]
[157]
Ruder EH, Hartman TJ, Reindollar RH, Goldman MB. Female dietary antioxidant intake and time to pregnancy among couples treated for unexplained infertility. Fertil Steril 2014; 101(3): 759-66.
[http://dx.doi.org/10.1016/j.fertnstert.2013.11.008] [PMID: 24355050]
[158]
Ye RJ, Yang JM, Hai DM, et al. Interplay between male reproductive system dysfunction and the therapeutic effect of flavonoids. Fitoterapia 2020; 147: 104756.
[http://dx.doi.org/10.1016/j.fitote.2020.104756] [PMID: 33069836]
[159]
Salehi B, Fokou PVT, Sharifi-Rad M, et al. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 2019; 12(1): 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[160]
Rahman S, Mathew S, Nair P, Ramadan WS, Vazhappilly CG. Health benefits of cyanidin-3-glucoside as a potent modulator of Nrf2-mediated oxidative stress. Inflammopharmacology 2021; 29(4): 907-23.
[http://dx.doi.org/10.1007/s10787-021-00799-7] [PMID: 33740221]