Traditional Use, Phytochemistry and Pharmacology of Ananas comosus (L.) Merr.(Family Bromeliaceae): An Update

Page: [428 - 441] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Ananas comosus belongs to the family Bromeliaceae and is commonly known as pineapple, anannas and anannaasa.

Objective: The present review gives detailed information about synonyms, geographical distribution, taxonomical classification, cultivation, pharmacognostical and phytochemical profile as well as about therapeutic potential of Ananas comosus.

Methods: For the preparation of the manuscript, all the information was collected from scientific engines and databases (Web of Science, Scifinder, Google Scholar, Scopus, PubMed, Wiley Online Library, Taylor & Francis online) using different keywords.

Result: Recent studies of A.comosus are based on traditional use, phytochemistry and pharmacology. The nutritional properties of the fruit are well known. The fruit contains various biological active phytoconstituents such as polyphenol compounds, volatile compounds and carotenoids, etc. which are therapeutically active. A.comosus is used for digestive issues, inflammation, seasickness and in a sore throat. Different studies on A.comosus have been conducted due to ethnopharmacological profile. It possesses antimalarial, antidiabetic, abortifacient, anticancer, antioxidant, antidiarrhoeal activity, etc. Finally industrial applications and ongoing clinical trials on pineapple are also summarized.

Conclusion: This review would assist researchers in formulating a therapeutically active herbal remedy.

Keywords: Pineapple, edible fruit, pharmacological uses, phytochemistry, phytoconstituents, rich

Graphical Abstract

[1]
Kongsuwan A, Suthiluk P, Theppakorn T, Srilaong V, Setha S. Bioactive compounds and antioxidant capacities of Phulae and Nanglae Pineapple. As J Food Ag-Ind 2009; 44-50.
[2]
Achinewhu SC, Hart AD. Effect of processing and storage on the ascorbic acid (vitamin C) content of some pineapple varieties grown in the Rivers State of Nigeria. Plant Foods Hum Nutr 1994; 46(4): 335-7.
[http://dx.doi.org/10.1007/BF01088433] [PMID: 7716115]
[3]
Brat P, Hoang LNT, Soler A, Reynes M, Brillouet J-M. Physicochemical characterization of a new pineapple hybrid (FLHORAN41 Cv.). J Agric Food Chem 2004; 52(20): 6170-7.
[http://dx.doi.org/10.1021/jf0492621] [PMID: 15453683]
[4]
Ivanova NN, Khomich LM, Perova IB, Eller KI. Grapefruit juice nutritional profile. Vopr Pitan 2018; 87(5): 85-94.
[http://dx.doi.org/10.24411/0042-8833-2018-10057] [PMID: 30592894]
[5]
Liang J, Ren Y, Wang Y, et al. Physicochemical, nutritional, and bioactive properties of pulp and peel from 15 kiwifruit cultivars. Food Biosci 2021; 42: 101157.
[http://dx.doi.org/10.1016/j.fbio.2021.101157]
[6]
Xie W, Xing D, Sun H, Wang W, Ding Y, Du L. The effects of Ananas comosus L. Leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. Am J Chin Med 2005; 33(1): 95-105.
[http://dx.doi.org/10.1142/S0192415X05002692] [PMID: 15844837]
[7]
Engwerda CR, Andrew D, Ladhams A, Mynott TL. Bromelain modulates T cell and B cell immune responses in vitro and in vivo. Cell Immunol 2001; 210(1): 66-75.
[http://dx.doi.org/10.1006/cimm.2001.1807] [PMID: 11485354]
[8]
Manhart N, Akomeah R, Bergmeister H, Spittler A, Ploner M, Roth E. Administration of proteolytic enzymes bromelain and trypsin diminish the number of CD4+ cells and the interferon-γ response in Peyer’s patches and spleen in endotoxemic balb/c mice. Cell Immunol 2002; 215(2): 113-9.
[http://dx.doi.org/10.1016/S0008-8749(02)00019-9] [PMID: 12202148]
[9]
World pineapple production by country | Statista. Available from: https://www.statista.com/statistics/298517/global-pineapple-production-by-leading-countries/ (Accessed Apr 18, 2022).
[10]
Lim TK. Edible medicinal and non-medicinal plants. Cham: Springer International Publishing 2016.
[http://dx.doi.org/10.1007/978-3-319-26065-5]
[11]
Pineapple. Available from: http://nhb.gov.in/report_files/pineapple/PINEAPPLE.htm (Accessed Apr 18, 2022).
[12]
Fruit growing in India. (Book, 1960). 1960. Available from: https://www.worldcat.org/title/fruit-growing-in-india/oclc/6440201
[14]
Samson JA. Tropical fruits. (2nd ed.). New York: Longman Scientific and Technical 1986; pp. 256-69. Available from: http://www.sciepub.com/reference/290176 (Accessed Apr 18, 2022).
[15]
Osborne CP, Beerling DJ. Nature’s green revolution: The remarkable evolutionary rise of C4 plants. Philos Trans R Soc Lond B Biol Sci 2006; 361(1465): 173-94.
[http://dx.doi.org/10.1098/rstb.2005.1737] [PMID: 16553316]
[16]
Spironello A, Quaggio JA, Teixeira LAJ, Furlani PR, Sigrist JMM. Pineapple yield and fruit quality effected by NPK fertilization in a tropical soil. Rev Bras Frutic 2004; 26(1): 155-9.
[http://dx.doi.org/10.1590/S0100-29452004000100041]
[17]
Bartholomew DP, Paull RE, Rohrbach KG. The pineapple: Botany, production and uses. 2003. Available from: http://www.cabi.org/cabebooks/ebook/20023183451 (Accessed Apr 18, 2022).
[18]
Young HY. Pesticide and growth regulator residues in pineapple. Residue reviews / rückstands-berichte. New York, NY: Springer New York 1971; 35: pp. 81-101.
[http://dx.doi.org/10.1007/978-1-4612-9812-0_6]
[19]
Joy PP, Anjana R, Soumya KK. Pests of pineapple and their management. Pineapple research station. Vazhakulam:: Kerala Agricultural University 2013; pp. 686-70. Available from: https://www.researchgate.net/publication/284168155 (Accessed Apr 18, 2022).
[20]
Tropical crops: monocotyledons (eBook, 1972). Available from: https://www.worldcat.org/title/tropical-crops-monocotyledons/oclc/645945583 (Accessed Apr 18, 2022).
[21]
Okimoto MC. Anatomy and histology of the pineapple inflorescence and fruit. Bot Gaz 1948; 110(2): 217-31. (Accessed Apr 18, 2022).
[http://dx.doi.org/10.1086/335530]
[22]
Mitra S. Recent advances in postharvest technology of pineapple. Acta Hortic 2020; 1278(1278): 1-6.
[http://dx.doi.org/10.17660/ActaHortic.2020.1278.1]
[23]
Sizer FS, Whitney EN. Nutrition: Concepts and Controversies 12th. 2010. Available from: https://www.goodreads.com/book/show/53083578-nutrition
[25]
Cordenunsi B, Saura-Calixto F, Diaz-Rubio ME, et al. Carbohydrate composition of ripe pineapple (Cv. Perola) and the glycemic response in humans. Food Sci Technol (Campinas) 2010; 30(1): 282-8.
[http://dx.doi.org/10.1590/S0101-20612010000100041]
[26]
Salehi F. Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. Food Sci Nutr 2021; 9(8): 4666-86.
[http://dx.doi.org/10.1002/fsn3.2430] [PMID: 34401112]
[27]
Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference. Release 27 (2014) Documentation and User Guide 2014. Available from: http://www.ars.usda.gov/ba/bhnrc/ndl
[28]
Pineapple: Nutrition, health benefits and all you need to know about this fruit - Times of India. Available from: https://timesofindia.indiatimes.com/life-style/health-fitness/diet/pineapple-nutrition-health-benefits-and-all-you-need-to-know-about-this-fruit/articleshow/82130533.cms (Accessed Apr 18, 2022).
[29]
Price CT, Langford JR, Liporace FA. Essential nutrients for bone health and a review of their availability in the average North American diet. Open Orthop J 2012; 6(1): 143-9.
[http://dx.doi.org/10.2174/1874325001206010143] [PMID: 22523525]
[30]
Abbas S, Shanbhag T, Kothare A. Applications of bromelain from pineapple waste towards acne. Saudi J Biol Sci 2021; 28(1): 1001-9.
[http://dx.doi.org/10.1016/j.sjbs.2020.11.032] [PMID: 33424393]
[31]
Liu RH. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J Nutr 2004; 134(12) (Suppl.): 3479S-85S.
[http://dx.doi.org/10.1093/jn/134.12.3479S] [PMID: 15570057]
[32]
Simpson KL. Chemical Changes in Natural Food Pigments. In: Richardson T, Finley JW, Eds. Chemical changes in food during processing. Dordrecht: Springer Netherlands 1985; pp. 409-41.
[http://dx.doi.org/10.1007/978-94-017-1016-9_18]
[33]
Bauernfeind JC, Adams CR, Marusich WL. 6 - Carotenes and other vitamin A precursors in animal feed BT - carotenoids as colorants and vitamin A precursors. Food Sci Technol 1981; 563-743.
[34]
Freitas A, Moldão-Martins M, Costa HS, Albuquerque TG, Valente A, Sanches-Silva A. Effect of UV-C radiation on bioactive compounds of pineapple (Ananas comosus L. Merr.) by-products. J Sci Food Agric 2015; 95(1): 44-52.
[http://dx.doi.org/10.1002/jsfa.6751] [PMID: 24852602]
[35]
Sinha NK, Sidhu JS, Barta J, Wu JSB, Cano MP. Handbook of Fruits and Fruit Processing. (2nd ed.), 2012. Available from: www.wiley.com/wiley-blackwell (Accessed Apr 18, 2022).
[36]
Gorinstein S, Zemser M, Haruenkit R, et al. Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon. J Nutr Biochem 1999; 10(6): 367-71.
[http://dx.doi.org/10.1016/S0955-2863(99)00017-0] [PMID: 15539312]
[37]
Saura-Calixto F. Dietary fibre complex in a sample rich in condensed tannins and uronic acids. Food Chem 1987; 23(2): 95-103.
[http://dx.doi.org/10.1016/0308-8146(87)90003-3]
[38]
Hounhouigan MH, Linnemann AR, Soumanou MM, Van Boekel MAJS. Effect of processing on the quality of pineapple juice. Food Rev Int 2014; 30(2): 112-33.
[http://dx.doi.org/10.1080/87559129.2014.883632]
[39]
Wen L, Wrolstad RE. Phenolic composition of authentic pineapple juice. J Food Sci 2002; 67(1): 155-61.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb11376.x]
[40]
Debnath B, Singh WS, Manna K. A phytopharmacological review on Ananas comosus. Adv Tradit Med 2021; 1-8.
[http://dx.doi.org/10.1007/s13596-021-00563-w]
[41]
Uzor PF, Ishiwu BU, Nwodo NJ. In vivo antimalarial effect of Ananas comosus (L) Merr (Bromeliaceae) fruit peel, and gas chromatography-mass spectroscopy profiling: A possible role for polyunsaturated fatty acid. Trop J Pharm Res 2020; 19(1): 137-45.
[http://dx.doi.org/10.4314/tjpr.v19i1.21]
[42]
Riya MP, Antu KA, Vinu T, Chandrakanth KC, Anilkumar KS, Raghu KG. An in vitro study reveals nutraceutical properties of Ananas comosus (L.) Merr. var. Mauritius fruit residue beneficial to diabetes. J Sci Food Agric 2014; 94(5): 943-50.
[http://dx.doi.org/10.1002/jsfa.6340] [PMID: 23929507]
[43]
Pakrashi A, Basak B. Abortifacient effect of steroids from Ananas comosus and their analogues on mice. J Reprod Fertil 1976; 46(2): 461-2.
[http://dx.doi.org/10.1530/jrf.0.0460461] [PMID: 943531]
[44]
Taprial S, Kashyap D, Mehta V, Kumar S, Kumar D. Antifertility effect of hydroalcoholic leaves extract of Michelia champaca L.: An ethnomedicine used by Bhatra women in Chhattisgarh state of India. J Ethnopharmacol 2013; 147(3): 671-5.
[http://dx.doi.org/10.1016/j.jep.2013.03.003] [PMID: 23501154]
[45]
Majumder D, Debnath R, Nath P, et al. Bromelain and Olea europaea (L.) leaf extract mediated alleviation of benzo(a)pyrene induced lung cancer through Nrf2 and NFκB pathway. Environ Sci Pollut Res Int 2021; 28(34): 47306-26.
[http://dx.doi.org/10.1007/s11356-021-13803-y] [PMID: 33893581]
[46]
Manosroi W, Chankhampan C, Manosroi J, Manosroi A. In vitro anti-cancer activity comparison of the freeze-dried and spray-dried bromelain from pineapple stems. Chiang Mai J Sci 2017; 44(4): 1407-18.
[47]
Morris D, Ehteda A, Moghaddam SM, Akhter J, Pillai K, Morris DL. Cytotoxic effects of bromelain in human gastrointestinal carcinoma cell lines (MKN45, KATO-III, HT29-5F12, and HT29-5M21). OncoTargets Ther 2013; 6: 403.
[http://dx.doi.org/10.2147/OTT.S43072]
[48]
Chang TC, Wei PL, Makondi PT, Chen WT, Huang CY, Chang YJ. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS One 2019; 14(1): e0210274.
[http://dx.doi.org/10.1371/journal.pone.0210274] [PMID: 30657763]
[49]
Mhatre M, Tilak-Jain J, De S, Devasagayam TPA. Evaluation of the antioxidant activity of non-transformed and transformed pineapple: A comparative study. Food Chem Toxicol 2009; 47(11): 2696-702.
[http://dx.doi.org/10.1016/j.fct.2009.06.031] [PMID: 19563857]
[50]
Mynott TL, Guandalini S, Raimondi F, Fasano A. Bromelain prevents secretion caused by Vibrio cholerae and Escherichia coli enterotoxins in rabbit ileum in vitro. Gastroenterology 1997; 113(1): 175-84.
[http://dx.doi.org/10.1016/S0016-5085(97)70093-3] [PMID: 9207276]
[51]
Azarkan M, González MM, Esposito RC, Errasti ME. Stem bromelain proteolytic machinery: Study of the effects of its components on fibrin (Ogen) and blood coagulation. Protein Pept Lett 2020; 27(11): 1159-70.
[http://dx.doi.org/10.2174/0929866527666200525163622] [PMID: 32484078]
[52]
View of in vitro anti-platelet aggregation activity of hydroxypropyl cellulose–cysteamine based nanoparticles containing crude bromelain. Int J Appl Pharma 2020; 12(3): 95-8.
[53]
Ajayi AM, Coker AI, Oyebanjo OT, Adebanjo IM, Ademowo OG. Ananas comosus (L) Merrill (pineapple) fruit peel extract demonstrates antimalarial, anti-nociceptive and anti-inflammatory activities in experimental models. J Ethnopharmacol 2022; 282: 114576.
[http://dx.doi.org/10.1016/j.jep.2021.114576] [PMID: 34461191]
[54]
Secor ER, Shah SJ, Guernsey LA, Schramm CM, Thrall RS. Bromelain limits airway inflammation in an ovalbumin-induced murine model of established asthma 2012; 18(5): 9.
[55]
Secor ER Jr, Carson WF IV, Cloutier MM, et al. Bromelain exerts anti-inflammatory effects in an ovalbumin-induced murine model of allergic airway disease. Cell Immunol 2005; 237(1): 68-75.
[http://dx.doi.org/10.1016/j.cellimm.2005.10.002] [PMID: 16337164]
[56]
Walker AF, Bundy R, Hicks SM, Middleton RW. Bromelain reduces mild acute knee pain and improves well-being in a dose-dependent fashion in an open study of otherwise healthy adults. Phytomedicine 2002; 9(8): 681-6.
[http://dx.doi.org/10.1078/094471102321621269]
[57]
Milind P, Pooja G, Jambheshwar G. Eat pineapple a day to keep depression at bay. Int J Res Ayurveda Pharm 2010; 1(2): 439-48.
[58]
Seenak P, Kumphune S, Malakul W, Chotima R, Nernpermpisooth N. Pineapple consumption reduced cardiac oxidative stress and inflammation in high cholesterol diet-fed rats. Nutr Metab 2021; 18(1): 36.
[http://dx.doi.org/10.1186/s12986-021-00566-z] [PMID: 33827626]
[59]
Juhasz B, Thirunavukkarasu M, Pant R, et al. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. Am J Physiol Heart Circ Physiol 2008; 294(3): H1365-70.
[http://dx.doi.org/10.1152/ajpheart.01005.2007] [PMID: 18192224]
[60]
Rosenberg L, Lapid O, Bogdanov-Berezovsky A, et al. Safety and efficacy of a proteolytic enzyme for enzymatic burn debridement: A preliminary report. Burns 2004; 30(8): 843-50.
[http://dx.doi.org/10.1016/j.burns.2004.04.010]
[61]
Sripanidkulchai B, Wongpanich V, Laupattarakasem P, Suwansaksri J, Jirakulsomchok D. Diuretic effects of selected Thai indigenous medicinal plants in rats. J Ethnopharmacol 2001; 75(2-3): 185-90.
[http://dx.doi.org/10.1016/S0378-8741(01)00173-8] [PMID: 11297849]
[62]
Del Juncal-Guzmán D, Antunes-Ricardo M, Sánchez-Burgos JA, Sáyago-Ayerdi SG, Gutiérrez-Uribe JA. Immunomodulatory effect of metabolites from digested and fermented fractions from irradiated pineapple (Annanas comosus L.) snack-bars. Food Chem 2022; 373(Pt A): 131375.
[http://dx.doi.org/10.1016/j.foodchem.2021.131375] [PMID: 34742041]
[63]
Bahde R, Palmes D, Minin E, et al. Bromelain ameliorates hepatic microcirculation after warm ischemia. J Surg Res 2007; 139(1): 88-96.
[http://dx.doi.org/10.1016/j.jss.2006.10.004] [PMID: 17292418]
[64]
Xie W, Wang W, Su H, Xing D, Cai G, Du L. Hypolipidemic mechanisms of Ananas comosus L. leaves in mice: Different from fibrates but similar to statins. J Pharmacol Sci 2007; 103(3): 267-74.
[http://dx.doi.org/10.1254/jphs.FP0061244] [PMID: 17380035]
[65]
Arshad ZIM, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP. Bromelain: An overview of industrial application and purification strategies. Appl Microbiol Biotechnol 2014; 98(17): 7283-97.
[http://dx.doi.org/10.1007/s00253-014-5889-y] [PMID: 24965557]
[66]
Find Trials - ClinicalTrials.gov Available from: https://clinicaltrials.gov/ct2/search (Accessed Apr 18, 2022).