An Overview of Biological Importance, Pharmacological Aspects, and Analytical Techniques of Bavachin from Psoralea corylifolia Linn.

Article ID: e110422203405 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Psoralea corylifolia Linn belongs to the Leguminosae family and is commonly known as ‘Bakuchi’ in the Ayurvedic system of medicine. P. corylifolia is an important medicinal herb used for the treatment of leucoderma, psoriasis, and leprosy. P. corylifolia seed contain psoralen, psoralidin, isopsoralen, neobavaisoflavone, corylin, bavachin, and bavachalcone. P. corylifolia has been used for the treatment of asthma, vitiligo, nephritis, calvities, and cough. Bavachin is a pure phytochemical found to be present in the seeds and fruit of P. corylifolia.

Methods: In order to know the medicinal properties and therapeutic benefits of bavachin, numerous scientific research data have been collected and analyzed from different literature sources. The medicinal importance and pharmacological activities of bavachin have been investigated through literature data analysis of different scientific research works. Scientific research data has been collected from databases such as PubMed, Google, Google Scholar, Science Direct, and Scopus using the words Psoralea corylifolia and bavachin. Scientific articles on bavachin with respect to its pharmacological activities, medicinal importance, and analytical data have been collected from these databases and presented here with proper citation.

Results: Data analysis of scientific research works on bavachin revealed the biological importance of bavachin in medicine. Bavachin showed anti-inflammatory, anticancer, anti-bacterial, lipidlowering, and cholesterol-reducing properties. Bavachin has multiple pharmacological activities, including platelet aggregation, α-glucosidase activities, and antibacterial potential. Bavachin has a potential estrogen supplement for estrogen replacement therapy. Present work summarized the biological potential of bavachin on inflammatory disorders, articular cartilage degeneration, cardiovascular disease, hyperglycemia, Parkinson's disease, Alzheimer's disease, apoptosis, melanin synthesis, estrogen receptor, UDP-glucuronosyltransferase 1A1, and various forms of pathogenic infection. Analytical data revealed the significance of HPLC-UV, HPLC, HPLC-ECD, HPLCDAD, IT-MS, HPLC, HPLC/TOF-MS, LC-MS/MS, and ILUAE techniques for separation, identification, and quantification of bavachin in different samples.

Conclusion: Literature data analysis revealed the biological importance and therapeutic potential of bavachin in medicine for the treatment of various forms of human disorders.

Keywords: Bioactive material, bavachin, herbal product, P. corylifolia, human disorders, analytical techniques, pharmacological properties.

Graphical Abstract

[1]
Katiyar C, Gupta A, Kanjilal S, Katiyar S. Drug discovery from plant sources: An integrated approach. Ayu 2012; 33(1): 10-9.
[http://dx.doi.org/10.4103/0974-8520.100295] [PMID: 23049178]
[2]
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[3]
Sen S, Chakraborty R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J Tradit Complement Med 2016; 7(2): 234-44.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.006] [PMID: 28417092]
[4]
Calixto JB. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res 2000; 33(2): 179-89.
[http://dx.doi.org/10.1590/S0100-879X2000000200004] [PMID: 10657057]
[5]
Sadeghi Z, Mahmood A. Ethno-gynecological knowledge of medicinal plants used by Baluch tribes, southeast of Baluchistan, Iran. Rev Bras Farmacogn 2014; 24(6): 706-15.
[http://dx.doi.org/10.1016/j.bjp.2014.11.006]
[6]
Patel K, Kumar V, Verma A, Rahman M, Patel DK. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Pat Antiinfect Drug Discov 2019; 14(1): 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[7]
Patel K, Kumar V, Rahman M, Verma A, Patel DK. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr Tradit Med 2018; 4(2): 120-7.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[8]
Dhiman A, Nanda A, Ahmad S. A quest for staunch effects of flavonoids: Utopian protection against hepatic ailments. Arab J Chem 2016; 9: S1813-23.
[http://dx.doi.org/10.1016/j.arabjc.2012.05.001]
[9]
Borate A, Udgire M, Khambhapati A. Antifungal activity associated with Psoralea corylifolia linn. (bakuchi) seed and chemical profile crude methanol seed extract. Mintage J Pharm Med Sci 2014; 3: 4-6.
[10]
Chopra B, Dhingra AK, Dhar KL. Psoralea corylifolia L. (Buguchi) - folklore to modern evidence: Review. Fitoterapia 2013; 90: 44-56.
[http://dx.doi.org/10.1016/j.fitote.2013.06.016] [PMID: 23831482]
[11]
Hung Y-L, Wang S-C, Suzuki K, et al. Bavachin attenuates LPS-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. Phytomedicine 2019; 59: 152785.
[http://dx.doi.org/10.1016/j.phymed.2018.12.008] [PMID: 31009850]
[12]
Hao W, Zhang X, Zhao W, Chen X. Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells. PeerJ 2014; 2: e555.
[http://dx.doi.org/10.7717/peerj.555] [PMID: 25250213]
[13]
Khushboo PS, Jadhav VM, Kadam VJ. Development and validation of a HPTLC method for determination of psoralen in Psoralea corylifolia (Bavachi). Int J Pharm Tech Res 2009; 1: 1122-8.
[14]
Liu R, Li A, Sun A, Kong L. Preparative isolation and purification of psoralen and isopsoralen from Psoralea corylifolia by high-speed counter-current chromatography. J Chromatogr A 2004; 1057(1-2): 225-8.
[http://dx.doi.org/10.1016/j.chroma.2004.09.049] [PMID: 15584243]
[15]
Lee H, Li H, Noh M, Ryu J-H. Bavachin from Psoralea corylifolia improves insulin-dependent glucose uptake through insulin signaling and AMPK activation in 3T3-L1 Adipocytes. Int J Mol Sci 2016; 17(4): 527.
[http://dx.doi.org/10.3390/ijms17040527] [PMID: 27070585]
[16]
Park J, Kim D-H, Ahn H-N, Song Y-S, Lee Y-J, Ryu J-H. Activation of estrogen receptor by bavachin from Psoralea corylifolia. Biomol Ther (Seoul) 2012; 20(2): 183-8.
[http://dx.doi.org/10.4062/biomolther.2012.20.2.183] [PMID: 24116293]
[17]
Chen Q, Li Y, Chen Z. Separation, identification, and quantification of active constituents in Fructus Psoraleae by high-performance liquid chromatography with UV, ion trap mass spectrometry, and electrochemical detection. J Pharm Anal 2012; 2(2): 143-51.
[http://dx.doi.org/10.1016/j.jpha.2011.11.005] [PMID: 29403734]
[18]
Gao Q, Xu Z, Zhao G, et al. Simultaneous quantification of 5 main components of Psoralea corylifolia L. in rats’ plasma by utilizing ultra high pressure liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1011: 128-35.
[http://dx.doi.org/10.1016/j.jchromb.2015.12.044] [PMID: 26773881]
[19]
Yan C, Wu Y, Weng Z, et al. Development of an HPLC method for absolute quantification and QAMS of flavonoids components in Psoralea corylifolia L. J Anal Methods Chem 2015; 2015: 792637.
[http://dx.doi.org/10.1155/2015/792637] [PMID: 26587307]
[20]
Zhu G, Luo Y, Xu X, Zhang H, Zhu M. Anti-diabetic compounds from the seeds of Psoralea corylifolia. Fitoterapia 2019; 139: 104373.
[http://dx.doi.org/10.1016/j.fitote.2019.104373] [PMID: 31629053]
[21]
Xu Q-X, Zhang Y-B, Liu X-Y, Xu W, Yang X-W. Cytotoxic heterodimers of meroterpene phenol from the fruits of Psoralea corylifolia. Phytochemistry 2020; 176: 112394.
[http://dx.doi.org/10.1016/j.phytochem.2020.112394] [PMID: 32361500]
[22]
Gao H-T-Y, Lang G-Z, Zang Y-D, et al. Bioactive monoterpene phenol dimers from the fruits of Psoralea corylifolia L. Bioorg Chem 2021; 112: 104924.
[http://dx.doi.org/10.1016/j.bioorg.2021.104924] [PMID: 33933806]
[23]
Fei W-T, Zhang J-J, Tang R-Y, Yue N, Zhou X, Wang L-Y. Two new prenylated flavonoids from the seeds of Psoralea corylifolia with their inhibitory activity on α-glucosidase. Phytochem Lett 2020; 39: 64-7.
[http://dx.doi.org/10.1016/j.phytol.2020.07.005]
[24]
Xiu M-X, Zhao Y-M, Zhang Y, et al. Diacylglycerol acyltransferase inhibitory new meroterpenes from the seeds of Psoralea corylifolia, and their structure-activity relationship study. Fitoterapia 2021; 151: 104881.
[http://dx.doi.org/10.1016/j.fitote.2021.104881] [PMID: 33713740]
[25]
He Z-C, Xu Q-X, Yang X-W, Wang Z-J, Xu W. The benzofuran glycosides from the fruits of Psoralea corylifolia L. Fitoterapia 2021; 155: 105057.
[http://dx.doi.org/10.1016/j.fitote.2021.105057] [PMID: 34655701]
[26]
Xu Q-X, Xu W, Yang X-W. Meroterpenoids from the fruits of Psoralea corylifolia. Tetrahedron 2020; 76(31-32): 131343.
[http://dx.doi.org/10.1016/j.tet.2020.131343]
[27]
Li H-Z, Meng X, Jiang Y-Y, et al. Four new flavonoids with DGAT inhibitory activity from Psoralea corylifolia. Phytochem Lett 2018; 28: 130-4.
[http://dx.doi.org/10.1016/j.phytol.2018.10.005]
[28]
Kim H-J, Jin B-R, An H-J. Psoralea corylifolia L. extract ameliorates benign prostatic hyperplasia by regulating prostate cell proliferation and apoptosis. J Ethnopharmacol 2021; 273: 113844.
[http://dx.doi.org/10.1016/j.jep.2021.113844] [PMID: 33485982]
[29]
Wang D, Guo J, Chai X, Yang J, Wang Y, Gao X. Dynamic variations of bioactive compounds driven by enzymes in Psoralea corylifolia L. from growth to storage and processing. Arab J Chem 2022; 15(1): 103461.
[http://dx.doi.org/10.1016/j.arabjc.2021.103461]
[30]
Yang Y, Tang X, Hao F, et al. Bavachin induces apoptosis through mitochondrial regulated ER stress pathway in HepG2 cells. Biol Pharm Bull 2018; 41(2): 198-207.
[http://dx.doi.org/10.1248/bpb.b17-00672] [PMID: 29187671]
[31]
He H-Q, Law BYK, Zhang N, et al. Bavachin protects human aortic smooth muscle cells against β-glycerophosphate-mediated vascular calcification and apoptosis via activation of mtor-dependent autophagy and suppression of β-catenin signaling. Front Pharmacol 2019; 10: 1427.
[http://dx.doi.org/10.3389/fphar.2019.01427] [PMID: 31920640]
[32]
Wang JH, Pei YY, Xu HD, et al. Effects of bavachin and its regulation of melanin synthesis in A375 cells. Biomed Rep 2016; 5(1): 87-92.
[http://dx.doi.org/10.3892/br.2016.688] [PMID: 27347410]
[33]
Cheng C-C, Chen Y-H, Chang W-L, et al. Phytoestrogen bavachin mediates anti-inflammation targeting Ikappa B kinase-I kappaB α-NF-kappaB signaling pathway in chondrocytes in vitro. Eur J Pharmacol 2010; 636(1-3): 181-8.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.031] [PMID: 20361957]
[34]
Lee SW, Yun BR, Kim MH, et al. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation. Planta Med 2012; 78(9): 903-6.
[http://dx.doi.org/10.1055/s-0031-1298482] [PMID: 22573369]
[35]
Lee G-J, Cho I-A, Kang K-R, et al. Biological effects of the herbal plant-derived phytoestrogen bavachin in primary rat chondrocytes. Biol Pharm Bull 2015; 38(8): 1199-207.
[http://dx.doi.org/10.1248/bpb.b15-00198] [PMID: 26235583]
[36]
Weng Z-B, Gao Q-Q, Wang F, et al. Positive skeletal effect of two ingredients of Psoralea corylifolia L. on estrogen deficiency-induced osteoporosis and the possible mechanisms of action. Mol Cell Endocrinol 2015; 417: 103-13.
[http://dx.doi.org/10.1016/j.mce.2015.09.025] [PMID: 26419930]
[37]
Wang D, Li F, Jiang Z. Osteoblastic proliferation stimulating activity of Psoralea corylifolia extracts and two of its flavonoids. Planta Med 2001; 67(8): 748-9.
[http://dx.doi.org/10.1055/s-2001-18343] [PMID: 11731919]
[38]
Liu M, Xu H, Ma Y, Cheng J, Hua Z, Huang G. Osteoblasts proliferation and differentiation stimulating activities of the main components of Epimedii folium. Pharmacogn Mag 2017; 13(49): 90-4.
[PMID: 28216889]
[39]
Li WD, Yan CP, Wu Y, et al. Osteoblasts proliferation and differentiation stimulating activities of the main components of Fructus Psoraleae corylifoliae. Phytomedicine 2014; 21(4): 400-5.
[http://dx.doi.org/10.1016/j.phymed.2013.09.015] [PMID: 24220018]
[40]
Zarmouh NO, Mazzio EA, Elshami FM, Messeha SS, Eyunni SVK, Soliman KFA. Evaluation of the inhibitory effects of bavachinin and bavachin on human monoamine oxidases A and B. Evid Based Complement Alternat Med 2015; 2015: 852194.
[http://dx.doi.org/10.1155/2015/852194] [PMID: 26557867]
[41]
Xu Q-X, Hu Y, Li G-Y, Xu W, Zhang Y-T, Yang X-W. Multi-target Anti-Alzheimer activities of four prenylated compounds from psoralea fructus. Molecules 2018; 23(3): 614.
[http://dx.doi.org/10.3390/molecules23030614] [PMID: 29518051]
[42]
Takeda T, Tsubaki M, Tomonari Y, et al. Bavachin induces the apoptosis of multiple myeloma cell lines by inhibiting the activation of nuclear factor kappa B and signal transducer and activator of transcription 3. Biomed Pharmacother 2018; 100: 486-94.
[http://dx.doi.org/10.1016/j.biopha.2018.02.019] [PMID: 29477912]
[43]
Ohno O, Watabe T, Nakamura K, et al. Inhibitory effects of bakuchiol, bavachin, and isobavachalcone isolated from Piper longum on melanin production in B16 mouse melanoma cells. Biosci Biotechnol Biochem 2010; 74(7): 1504-6.
[http://dx.doi.org/10.1271/bbb.100221] [PMID: 20622433]
[44]
Dong X, Fan Y, Yu L, Hu Y. Synthesis of four natural prenylflavonoids and their estrogen-like activities. Arch Pharm (Weinheim) 2007; 340(7): 372-6.
[http://dx.doi.org/10.1002/ardp.200700057] [PMID: 17610303]
[45]
Wang X-X, Lv X, Li S-Y, et al. Identification and characterization of naturally occurring inhibitors against UDP-glucuronosyltransferase 1A1 in Fructus Psoraleae (Bu-gu-zhi). Toxicol Appl Pharmacol 2015; 289(1): 70-8.
[http://dx.doi.org/10.1016/j.taap.2015.09.003] [PMID: 26348140]
[46]
Cheng C, Yu-Feng S, Yang H, et al. Highly efficient inhibition of spring viraemia of carp virus replication in vitro mediated by bavachin, a major constituent of psoralea corlifonia Lynn. Virus Res 2018; 255: 24-35.
[http://dx.doi.org/10.1016/j.virusres.2018.06.002] [PMID: 29913251]
[47]
Yang Y-F, Zhang Y-B, Chen Z-J, Zhang Y-T, Yang X-W. Plasma pharmacokinetics and cerebral nuclei distribution of major constituents of Psoraleae fructus in rats after oral administration. Phytomedicine 2018; 38: 166-74.
[http://dx.doi.org/10.1016/j.phymed.2017.12.002] [PMID: 29425649]
[48]
Chen Q, Li P, Zhang J, Zhu J. Preclinical pharmacokinetic analysis of armillarisin succinate ester in mouse plasma and tissues by LC-MS/MS. Biomed Chromatogr 2013; 27(1): 130-6.
[http://dx.doi.org/10.1002/bmc.2762] [PMID: 22674750]
[49]
Zhou ZX, Yang L, Cheng LY, et al. Simultaneous characterization of multiple Psoraleae Fructus bioactive compounds in rat plasma by ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry for application in sex-related differences in pharmacokinetics. J Sep Sci 2020; 43(14): 2804-16.
[http://dx.doi.org/10.1002/jssc.202000286] [PMID: 32384213]
[50]
Tang XY, Dai ZQ, Wu QC, et al. Simultaneous determination of multiple components in rat plasma and pharmacokinetic studies at a pharmacodynamic dose of Xian-Ling-Gu-Bao capsule by UPLC-MS/MS. J Pharm Biomed Anal 2020; 177: 112836.
[http://dx.doi.org/10.1016/j.jpba.2019.112836] [PMID: 31473481]
[51]
Li Y, Wang F, Chen Z. Determination of bavachin and isobavachalcone in Fructus Psoraleae by high-performance liquid chromatography with electrochemical detection. J Sep Sci 2011; 34(5): 514-9.
[http://dx.doi.org/10.1002/jssc.201000801] [PMID: 21265020]
[52]
Zhang Y, Chen Z. Separation of isomeric bavachin and isobavachalcone in the fructus Psoraleae by capillary electrophoresis-mass spectrometry. J Sep Sci 2012; 35(13): 1644-50.
[http://dx.doi.org/10.1002/jssc.201200173] [PMID: 22761143]
[53]
Shi M, Zhang J, Liu C, et al. Ionic liquid-based ultrasonic-assisted extraction to analyze seven compounds in Psoralea Fructus coupled with HPLC. Molecules 2019; 24(9): 1699.
[http://dx.doi.org/10.3390/molecules24091699] [PMID: 31052330]
[54]
Luan L, Shen X, Liu X, Wu Y, Tan M. Qualitative analysis of Psoraleae Fructus by HPLC-DAD/TOF-MS fingerprint and quantitative analysis of multiple components by single marker. Biomed Chromatogr 2018; 32(2): e4059.
[http://dx.doi.org/10.1002/bmc.4059] [PMID: 28777876]
[55]
Zhao H, Chen Z. Screening of neuraminidase inhibitors from traditional Chinese medicines by integrating capillary electrophoresis with immobilized enzyme microreactor. J Chromatogr A 2014; 1340: 139-45.
[http://dx.doi.org/10.1016/j.chroma.2014.03.028] [PMID: 24679826]
[56]
Zhang W, Zhou W, Chen Z. Graphene/polydopamine-modified polytetrafluoroethylene microtube for the sensitive determination of three active components in Fructus Psoraleae by online solid-phase microextraction with high-performance liquid chromatography. J Sep Sci 2014; 37(21): 3110-6.
[http://dx.doi.org/10.1002/jssc.201400706] [PMID: 25132311]
[57]
Lin RM, Wang DW, Xiong ZL, Xu Y, Li FM. HPLC determination of two flavonoid compounds in Psoralea corylifolia. Zhongguo Zhongyao Zazhi 2002; 27(9): 669-71.
[PMID: 12776567]
[58]
Yin FZ, Li L, Lu TL, Li WD, Cai BC, Yin W. Quality assessment of Psoralea fructus by HPLC fingerprint coupled with multi-components analysis. Indian J Pharm Sci 2015; 77(6): 715-22.
[http://dx.doi.org/10.4103/0250-474X.174996] [PMID: 26997699]
[59]
Zhang Y, Chen Z, Xu X, et al. Rapid separation and simultaneous quantitative determination of 13 constituents in Psoraleae Fructus by a single marker using high-performance liquid chromatography with diode array detection. J Sep Sci 2017; 40(21): 4191-202.
[http://dx.doi.org/10.1002/jssc.201700482] [PMID: 28869337]
[60]
Wang T-X, Yin Z-H, Zhang W, Peng T, Kang W-Y. Chemical constituents from Psoralea corylifolia and their antioxidant alpha-glucosidase inhibitory and antimicrobial activities. Zhongguo Zhongyao Zazhi 2013; 38(14): 2328-33.
[PMID: 24199566]
[61]
Song X, Qi A, Wang Y, Jing Y, Chai X, Liu Y. Variation of 4 kinds of compounds in Psoralea corylifolia processed by different methods. Zhongguo Zhongyao Zazhi 2011; 36(15): 2071-5.
[PMID: 22066442]
[62]
Matsuda H, Sugimoto S, Morikawa T, et al. Bioactive constituents from Chinese natural medicines. XX. Inhibitors of antigen-induced degranulation in RBL-2H3 cells from the seeds of Psoralea corylifolia. Chem Pharm Bull (Tokyo) 2007; 55(1): 106-10.
[http://dx.doi.org/10.1248/cpb.55.106] [PMID: 17202711]
[63]
Tsai W-J, Hsin W-C, Chen C-C. Antiplatelet flavonoids from seeds of Psoralea corylifolia. J Nat Prod 1996; 59(7): 671-2.
[http://dx.doi.org/10.1021/np960157y] [PMID: 8759164]
[64]
Haraguchi H, Inoue J, Tamura Y, Mizutani K. Antioxidative components of Psoralea corylifolia (Leguminosae). Phytother Res 2002; 16(6): 539-44.
[http://dx.doi.org/10.1002/ptr.972] [PMID: 12237811]
[65]
Shrestha S, Jadav HR, Bedarkar P, et al. Pharmacognostical evaluation of Psoralea corylifolia Linn. seed. J Ayurveda Integr Med 2018; 9(3): 209-12.
[http://dx.doi.org/10.1016/j.jaim.2017.05.005] [PMID: 30121145]
[66]
Wang D, Xiu M-X, Li H-Z, et al. Two new meroterpenes with activity against diacylglycerol acyltransferase from seeds of Psoralea corylifolia. Phytochem Lett 2020; 40: 171-5.
[http://dx.doi.org/10.1016/j.phytol.2020.10.006]
[67]
Zhao Y-M, Xiu M-X, Wang D, et al. Flavonoids from the seeds of Psoralea corylifolia inhibit diacylglycerol acyltransferase. Phytochem Lett 2021; 44: 120-4.
[http://dx.doi.org/10.1016/j.phytol.2021.06.013]