Current Nutrition & Food Science

Author(s): Özge Esgin* and Tayyibe Erten

DOI: 10.2174/1573401318666220308154735

The Importance of Nutrition and a Balanced Diet in the Elderly during the COVID-19 Pandemic

Page: [698 - 705] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Age is an important risk factor for the mortality rate in the COVID-19 disease, and mostly, hospitalised patients over 60 years with chronic diseases are at high risk of death due to this disease. Along with preventive measures, proper nutrient intake might be helpful in maintaining a healthy state or reduce the severity of the COVID-19 disease in the elderly.

Methods: The search was carried out in the PubMed, Scopus, Medline, Google Scholar and Web of Science using the following terms: COVID-19, coronavirus, elderly, elderly nutrition.

Results: The requirement for some macro and micronutrients, especially the nutrients that support the immune activity, increases in this disease. During the pandemic, the daily energy requirement for the elderly is 27-30 kcal/kg, while the protein intake is at least 1g/kg, and the ratio of fat and carbohydrate is 30:70 or less than 50:50. The daily intake of vitamin A, B6, B12, C, D, zinc and selenium can also be increased due to their supporting function in the immune system. Probiotics include Bifidobacterium longum MM-2, Lactobacillus plantarum 06CC2, Lactobacillus bulgaricus OLL1073R-1 and Lactobacillus rhamnosus M21, and the consumption of prebiotics in diet enhances the immune function. Additionally, flavonoids, such as baicalin, epigallocatechin gallate, gallocatechin gallate, kaempferol, luteolin, resveratrol and quercetin, improve immunity by reducing oxidative stress in the elderly.

Conclusion: Adequate and balanced nutrition diet should be applied during the pandemic; in addition to this, micronutrient deficiencies should also be overcome in the elderly at every stage of life.

Keywords: Pandemic, coronavirus, aging, nutrients, COVID-19, chronic diseases.

Graphical Abstract

[1]
Chojnacka K, Witek-Krowiak A, Skrzypczak D, Mikula K, Młynarz P. Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J Funct Foods 2020; 73: 104146.
[http://dx.doi.org/10.1016/j.jff.2020.104146] [PMID: 32834835]
[2]
Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures. Rev Med Virol 2020; 30(3): e2106.
[http://dx.doi.org/10.1002/rmv.2106] [PMID: 32302058]
[3]
Morais AHA, Passos TS, Maciel BLL, da Silva-Maia JK. Can probiotics and diet promote beneficial immune modulation and purine control in coronavirus infection? Nutrients 2020; 12(6): 1737.
[http://dx.doi.org/10.3390/nu12061737] [PMID: 32532069]
[4]
World Health Organization. WHO Coronavirus disease (COVID-19) dashboard. 2021. Available from [https://covid19.who.int/
[5]
Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The Inflammation link and the role of nutrition in potential mitigation. Nutrients 2020; 12(5): 1466.
[http://dx.doi.org/10.3390/nu12051466] [PMID: 32438620]
[6]
Wallace TC. Combating COVID-19 and building immune resilience: A potential role for magnesium nutrition? J Am Coll Nutr 2020; 39(8): 685-93.
[http://dx.doi.org/10.1080/07315724.2020.1785971] [PMID: 32649272]
[7]
de Faria Coelho-Ravagnani C, Corgosinho FC, Sanches FFZ, Prado CMM, Laviano A, Mota JF. Dietary recommendations during the COVID-19 pandemic. Nutr Rev 2021; 79(4): 382-93.
[http://dx.doi.org/10.1093/nutrit/nuaa067] [PMID: 32653930]
[8]
Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes Metab Syndr 2020; 14(4): 367-82.
[http://dx.doi.org/10.1016/j.dsx.2020.04.015] [PMID: 32334392]
[9]
McAuliffe S, Ray S, Fallon E, Bradfield J, Eden T, Kohlmeier M. Dietary micronutrients in the wake of COVID-19: An appraisal of evidence with a focus on high-risk groups and preventative healthcare. BMJ NPH 2020; 3(1): 93-9.
[http://dx.doi.org/10.1136/bmjnph-2020-000100] [PMID: 33235973]
[10]
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92(5): 479-90.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[11]
Lange KW. Food science and COVID-19. Food Sci Hum Wellness 2020; 10(1): 1-5.
[http://dx.doi.org/10.1016/j.fshw.2020.08.005]
[12]
Pae M, Meydani SN, Wu D. The role of nutrition in enhancing immunity in aging. Aging Dis 2012; 3(1): 91-129.
[PMID: 22500273]
[13]
World Health Organization. COVID-19: Vulnerable and high risk groups 2021. Available from: https://www.who.int/westernpacific/ emergencies/covid-19/information/high-risk-groupsAccessed on 16 August 2021
[14]
Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect 2020; 80(6): e14-8.
[http://dx.doi.org/10.1016/j.jinf.2020.03.005] [PMID: 32171866]
[15]
Mori H, Obinata H, Murakami W, et al. Comparison of COVID-19 disease between young and elderly patients: Hidden viral shedding of COVID-19. J Infect Chemother 2021; 27(1): 70-5.
[http://dx.doi.org/10.1016/j.jiac.2020.09.003] [PMID: 32950393]
[16]
Bongiovanni M, De Lauretis A, Manes G, et al. Clinical characteristics and outcome of COVID-19 pneumonia in elderly subjects. J Infect 2021; 82(2): e33-4.
[http://dx.doi.org/10.1016/j.jinf.2020.08.023] [PMID: 32827588]
[17]
Leung C. Risk factors for predicting mortality in elderly patients with COVID-19: A review of clinical data in China. Mech Ageing Dev 2020; 188: 111255.
[http://dx.doi.org/10.1016/j.mad.2020.111255] [PMID: 32353398]
[18]
Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect 2020; 80(6): 639-45.
[http://dx.doi.org/10.1016/j.jinf.2020.03.019] [PMID: 32240670]
[19]
Barazzoni R, Bischoff SC, Breda J, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr 2020; 39(6): 1631-8.
[http://dx.doi.org/10.1016/j.clnu.2020.03.022] [PMID: 32305181]
[20]
Li P, Chen L, Liu Z, et al. Clinical features and short-term outcomes of elderly patients with COVID-19. J Glob Infect Dis 2020; 97: 245-50.
[http://dx.doi.org/10.1016/j.ijid.2020.05.107] [PMID: 32492533]
[21]
Li T, Zhang Y, Gong C, et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr 2020; 74(6): 871-5.
[http://dx.doi.org/10.1038/s41430-020-0642-3] [PMID: 32322046]
[22]
Zhao X, Li Y, Ge Y, et al. Evaluation of nutrition risk and its association with mortality risk in severely and critically ill COVID‐19 patients. J Parenter Enteral Nutr 2021; 45(1): 32-42.
[http://dx.doi.org/10.1002/jpen.1953] [PMID: 32613660]
[23]
Bencivenga L, Rengo G, Varricchi G. Elderly at time of COronaVIrus disease 2019 (COVID-19): Possible role of immunosenescence and malnutrition. Geroscience 2020; 42(4): 1089-92.
[http://dx.doi.org/10.1007/s11357-020-00218-9] [PMID: 32578073]
[24]
Lidoriki I, Frountzas M, Schizas D. Could nutritional and functional status serve as prognostic factors for COVID-19 in the elderly? Med Hypotheses 2020; 144: 109946.
[http://dx.doi.org/10.1016/j.mehy.2020.109946] [PMID: 32512494]
[25]
Yu Z, Kong D, Peng J, Wang Z, Chen Y. Association of malnutrition with all-cause mortality in the elderly population: A 6-year cohort study. Nutr Metab Cardiovasc Dis 2021; 31(1): 52-9.
[http://dx.doi.org/10.1016/j.numecd.2020.08.004] [PMID: 32988726]
[26]
Liu G, Zhang S, Mao Z, Wang W, Hu H. Clinical significance of nutritional risk screening for older adult patients with COVID-19. Eur J Clin Nutr 2020; 74(6): 876-83.
[http://dx.doi.org/10.1038/s41430-020-0659-7] [PMID: 32404899]
[27]
Ammar A, Brach M, Trabelsi K, et al. Effects of COVID-19 home confinement on eating behaviour and physical activity: Results of the ECLB-COVID19 international online survey. Nutrients 2020; 12(6): 1583.
[http://dx.doi.org/10.3390/nu12061583] [PMID: 32481594]
[28]
Yamada K, Yamaguchi S, Sato K, Fuji T, Ohe T. The COVID-19 outbreak limits physical activities and increases sedentary behavior: A possible secondary public health crisis for the elderly. J Orthop Sci 2020; 25(6): 1093-4.
[http://dx.doi.org/10.1016/j.jos.2020.08.004] [PMID: 32933833]
[29]
Bouillon-Minois JB, Lahaye C, Dutheil F. Coronavirus and quarantine: Will we sacrifice our elderly to protect them? Arch Gerontol Geriatr 2020; 90: 104118.
[http://dx.doi.org/10.1016/j.archger.2020.104118] [PMID: 32470862]
[30]
Mukhtar S. Psychological impact of COVID-19 on older adults. Curr Med Res Pract 2020; 10(4): 201-2.
[PMID: 32839732]
[31]
Plagg B, Engl A, Piccoliori G, Eisendle K. Prolonged social isolation of the elderly during COVID-19: Between benefit and damage. Arch Gerontol Geriatr 2020; 89: 104086.
[http://dx.doi.org/10.1016/j.archger.2020.104086] [PMID: 32388336]
[32]
Recinella G, Marasco G, Di Battista A, Bianchi G, Zoli M. Prognostic role of nutritional status in elderly patients hospitalized for COVID-19. Med Hypotheses 2020; 144: 110016.
[http://dx.doi.org/10.1016/j.mehy.2020.110016] [PMID: 32749221]
[33]
Kim TS, Roslin M, Wang JJ, et al. Northwell health COVID‐19 research consortium. Obesity (Silver Spring) 2021; 29(2): 279-84.
[http://dx.doi.org/10.1002/oby.23076] [PMID: 33128848]
[34]
Yuan Y, Wang N, Ou X. Caution should be exercised for the detection of SARS-CoV-2, especially in the elderly. J Med Virol 2020; 92(9): 1641-8.
[http://dx.doi.org/10.1002/jmv.25796] [PMID: 32227494]
[35]
Volkert D, Beck AM, Cederholm T, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr 2019; 38(1): 10-47.
[http://dx.doi.org/10.1016/j.clnu.2018.05.024] [PMID: 30005900]
[36]
Gomes F, Schuetz P, Bounoure L, et al. ESPEN guidelines on nutritional support for polymorbid internal medicine patients. Clin Nutr 2018; 37(1): 336-53.
[http://dx.doi.org/10.1016/j.clnu.2017.06.025] [PMID: 28802519]
[37]
Camargo LDR, Doneda D, Oliveira VR. Whey protein ingestion in elderly diet and the association with physical, performance and clinical outcomes. Exp Gerontol 2020; 137: 110936.
[http://dx.doi.org/10.1016/j.exger.2020.110936] [PMID: 32289487]
[38]
Zuo P, Tong S, Yan Q, et al. Decreased prealbumin level is associated with increased risk for mortality in elderly hospitalized patients with COVID-19. Nutrition 2020; 78: 110930.
[http://dx.doi.org/10.1016/j.nut.2020.110930] [PMID: 32854020]
[39]
Ichinose T, Kato M, Matsuzaki K, et al. Beneficial effects of docosahexaenoic acid-enriched milk beverage intake on cognitive function in healthy elderly Japanese: A 12-month randomized, double-blind, placebo-controlled trial. J Funct Foods 2020; 74: 104195.
[http://dx.doi.org/10.1016/j.jff.2020.104195]
[40]
Fiorino S, Gallo C, Zippi M, et al. Cytokine storm in aged people with CoV-2: Possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res 2020; 32(10): 2115-31.
[http://dx.doi.org/10.1007/s40520-020-01669-y] [PMID: 32865757]
[41]
Wardwell L, Chapman-Novakofski K, Herrel S, Woods J. Nutrient intake and immune function of elderly subjects. J Am Diet Assoc 2008; 108(12): 2005-12.
[http://dx.doi.org/10.1016/j.jada.2008.09.003] [PMID: 19027403]
[42]
Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of Vitamin A in the Immune System. J Clin Med 2018; 7(9): 258.
[http://dx.doi.org/10.3390/jcm7090258] [PMID: 30200565]
[43]
Li R, Wu K, Li Y, et al. Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19. Aging (Albany NY) 2020; 12(15): 15784-96.
[http://dx.doi.org/10.18632/aging.103888] [PMID: 32805728]
[44]
Gorji A, Khaleghi Ghadiri M. Potential roles of micronutrient deficiency and immune system dysfunction in the coronavirus disease 2019 (COVID-19) pandemic. Nutrition 2021; 82: 111047.
[http://dx.doi.org/10.1016/j.nut.2020.111047] [PMID: 33277150]
[45]
Arruda de Souza Monnerat J, Ribeiro de Souza P, Monteiro da Fonseca Cardoso L, et al. Micronutrients and bioactive compounds in the immunological pathways related to SARS-CoV-2 (adults and elderly). Eur J Nutr 2020; 21: 1-21.
[PMID: 33084959]
[46]
Wee AKH. COVID-19's toll on the elderly and those with diabetes mellitus - Is vitamin B12 deficiency an accomplice? Med Hypotheses 2021; 146: 110374.
[http://dx.doi.org/10.1016/j.mehy.2020.110374] [PMID: 33257090]
[47]
Arshad MS, Khan U, Sadiq A, et al. Coronavirus disease (COVID-19) and immunity booster green foods: A mini review. Food Sci Nutr 2020; 8(8): 3971-6.
[http://dx.doi.org/10.1002/fsn3.1719] [PMID: 32837716]
[48]
Lee GY, Han SN. The role of vitamin E in immunity. Nutrients 2018; 10(11): 1614.
[http://dx.doi.org/10.3390/nu10111614] [PMID: 30388871]
[49]
Iddir M, Brito A, Dingeo G, et al. Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis. Nutrients 2020; 12(6): 1562.
[http://dx.doi.org/10.3390/nu12061562] [PMID: 32471251]
[50]
Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev 2013; 2013(1): CD000980.
[http://dx.doi.org/10.1002/14651858.CD000980.pub4] [PMID: 23440782]
[51]
Hemilä H, Chalker E. Vitamin C as a possible therapy for COVID-19. Infect Chemother 2020; 52(2): 222-3.
[http://dx.doi.org/10.3947/ic.2020.52.2.222] [PMID: 32410417]
[52]
Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12(4): 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[53]
Ebadi M, Montano-Loza AJ. Perspective: Improving vitamin D status in the management of COVID-19. Eur J Clin Nutr 2020; 74(6): 856-9.
[http://dx.doi.org/10.1038/s41430-020-0661-0] [PMID: 32398871]
[54]
Pereira M, Dantas Damascena A, Galvão Azevedo LM, de Almeida Oliveira T, da Mota Santana J. Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis. Crit Rev Food Sci Nutr 2020; 62(5): 1308-16.
[http://dx.doi.org/10.1080/10408398.2020.1841090] [PMID: 33146028]
[55]
Maghbooli Z, Sahraian MA, Ebrahimi M, et al. Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PLoS One 2020; 15(9): e0239799.
[http://dx.doi.org/10.1371/journal.pone.0239799] [PMID: 32976513]
[56]
Radujkovic A, Hippchen T, Tiwari-Heckler S, Dreher S, Boxberger M, Merle U. Vitamin D deficiency and outcome of COVID-19 patients. Nutrients 2020; 12(9): 2757.
[http://dx.doi.org/10.3390/nu12092757] [PMID: 32927735]
[57]
Pizzini A, Aichner M, Sahanic S, et al. Impact of Vitamin D deficiency on covid-19-a prospective analysis from the CovILD registry. Nutrients 2020; 12(9): 2775.
[http://dx.doi.org/10.3390/nu12092775] [PMID: 32932831]
[58]
Haase H, Rink L. The immune system and the impact of zinc during aging. Immun Ageing 2009; 6(1): 9.
[http://dx.doi.org/10.1186/1742-4933-6-9] [PMID: 19523191]
[59]
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr 2019; 10(4): 696-710.
[http://dx.doi.org/10.1093/advances/nmz013] [PMID: 31305906]
[60]
Barnett JB, Hamer DH, Meydani SN. Low zinc status: A new risk factor for pneumonia in the elderly? Nutr Rev 2010; 68(1): 30-7.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00253.x] [PMID: 20041998]
[61]
Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017; 8(2): 172-84.
[http://dx.doi.org/10.1080/19490976.2017.1290756] [PMID: 28165863]
[62]
Mahooti M, Miri SM, Abdolalipour E, Ghaemi A. The immunomodulatory effects of probiotics on respiratory viral infections: A hint for COVID-19 treatment? Microb Pathog 2020; 148: 104452.
[http://dx.doi.org/10.1016/j.micpath.2020.104452] [PMID: 32818576]
[63]
Shin R, Itoh Y, Kataoka M, et al. Anti-tumor activity of heat-killed Lactobacillus plantarum BF-LP284 on Meth-A tumor cells in BALB/c mice. Int J Food Sci Nutr 2016; 67(6): 641-9.
[http://dx.doi.org/10.1080/09637486.2016.1185771] [PMID: 27198983]
[64]
Antunes AEC, Vinderola G, Xavier-Santos D, Sivieri K. Potential contribution of beneficial microbes to face the COVID-19 pandemic. Food Res Int 2020; 136: 109577.
[http://dx.doi.org/10.1016/j.foodres.2020.109577] [PMID: 32846611]
[65]
Kawahara T, Takahashi T, Oishi K, et al. Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol Immunol 2015; 59(1): 1-12.
[http://dx.doi.org/10.1111/1348-0421.12210] [PMID: 25400245]
[66]
Takeda S, Takeshita M, Kikuchi Y, et al. Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: Alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int Immunopharmacol 2011; 11(12): 1976-83.
[http://dx.doi.org/10.1016/j.intimp.2011.08.007] [PMID: 21871585]
[67]
Nagai T, Makino S, Ikegami S, Itoh H, Yamada H. Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. Int Immunopharmacol 2011; 11(12): 2246-50.
[http://dx.doi.org/10.1016/j.intimp.2011.09.012] [PMID: 21986509]
[68]
Song JA, Kim HJ, Hong SK, et al. Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus. Microbiol Immunol Infect 2016; 49(1): 16-23.
[http://dx.doi.org/10.1016/j.jmii.2014.07.011] [PMID: 25304268]
[69]
Wang B, Hylwka T, Smieja M, Surrette M, Bowdish DME, Loeb M. Probiotics to prevent respiratory infections in nursing homes: A pilot randomized controlled trial. J Am Geriatr Soc 2018; 66(7): 1346-52.
[http://dx.doi.org/10.1111/jgs.15396] [PMID: 29741754]
[70]
Rosenberg HF, Domachowske JB. Inflammatory responses to respiratory syncytial virus (RSV) infection and the development of immunomodulatory pharmacotherapeutics. Curr Med Chem 2012; 19(10): 1424-31.
[http://dx.doi.org/10.2174/092986712799828346] [PMID: 22360479]
[71]
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14(8): 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[72]
Scheid MMA, Moreno YMF, Junior MRM, Pastore GM. Effect of prebiotics on the health of the elderly. Food Res Int 2013; 53(1): 426-32.
[http://dx.doi.org/10.1016/j.foodres.2013.04.003]
[73]
Russo M, Moccia S, Spagnuolo C, Tedesco I, Russo GL. Roles of flavonoids against coronavirus infection. Chem Biol Interact 2020; 328: 109211.
[http://dx.doi.org/10.1016/j.cbi.2020.109211] [PMID: 32735799]
[74]
Galanakis CM, Aldawoud TMS, Rizou M, Rowan NJ, Ibrahim SA. Food ingredients and active compounds against the Coronavirus disease (COVID-19) pandemic: A comprehensive review. Foods 2020; 9(11): 1701.
[http://dx.doi.org/10.3390/foods9111701] [PMID: 33233560]
[75]
Samieri C, Sun Q, Townsend MK, Rimm EB, Grodstein F. Dietary flavonoid intake at midlife and healthy aging in women. Am J Clin Nutr 2014; 100(6): 1489-97.
[http://dx.doi.org/10.3945/ajcn.114.085605] [PMID: 25411284]
[76]
Lalani S, Poh CL. Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses 2020; 12(2): 184.
[http://dx.doi.org/10.3390/v12020184] [PMID: 32041232]
[77]
Shibata C, Ohno M, Otsuka M, et al. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology 2014; 462-463(8): 42-8.
[http://dx.doi.org/10.1016/j.virol.2014.05.024] [PMID: 25092460]
[78]
Chu M, Xu L, Zhang MB, Chu ZY, Wang YD. Role of Baicalin in anti-influenza virus A as a potent inducer of IFN-gamma. BioMed Res Int 2015; 2015: 263630.
[http://dx.doi.org/10.1155/2015/263630] [PMID: 26783516]
[79]
Imanishi N, Tuji Y, Katada Y, et al. Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells. Microbiol Immunol 2002; 46(7): 491-4.
[http://dx.doi.org/10.1111/j.1348-0421.2002.tb02724.x] [PMID: 12222936]
[80]
Jeong HJ, Ryu YB, Park S-J, et al. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg Med Chem 2009; 17(19): 6816-23.
[http://dx.doi.org/10.1016/j.bmc.2009.08.036] [PMID: 19729316]
[81]
Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[82]
Wu W, Li R, Li X, et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses 2015; 8(1): 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[83]
Heinz SA, Henson DA, Austin MD, Jin F, Nieman DC. Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacol Res 2010; 62(3): 237-42.
[http://dx.doi.org/10.1016/j.phrs.2010.05.001] [PMID: 20478383]
[84]
Nguyen TTH, Woo H-J, Kang H-K, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett 2012; 34(5): 831-8.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[85]
Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 2010; 18(22): 7940-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[86]
Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res 2021; 35(3): 1230-6.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[87]
Arslan B, Ucuncu Ergun N, Topuz S, et al. Synergistic effect of quercetin and vitamin C against COVID-19: Is a possible guard for front liners. SSRN 3682517.2020;
[http://dx.doi.org/10.2139/ssrn.3682517]
[88]
Malaguarnera L. Influence of resveratrol on the Immune response. Nutrients 2019; 11(5): 946.
[http://dx.doi.org/10.3390/nu11050946] [PMID: 31035454]
[89]
Filardo S, Di Pietro M, Mastromarino P, Sessa R. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol Ther 2020; 214: 107613.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107613] [PMID: 32562826]
[90]
Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis 2017; 17(1): 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[91]
Li YQ, Li ZL, Zhao WJ, Wen RX, Meng QW, Zeng Y. Synthesis of stilbene derivatives with inhibition of SARS coronavirus replication. Eur J Med Chem 2006; 41(9): 1084-9.
[http://dx.doi.org/10.1016/j.ejmech.2006.03.024] [PMID: 16875760]
[92]
Bauer JM, Morley JE. Editorial: COVID-19 in older persons: The role of nutrition. Curr Opin Clin Nutr Metab Care 2021; 24(1): 1-3.
[http://dx.doi.org/10.1097/MCO.0000000000000717] [PMID: 33323712]
[93]
Handu D, Moloney L, Rozga M, Cheng FW. Malnutrition care during the COVID-19 pandemic: Considerations for registered dietitian nutritionists. J Acad Nutr Diet 2021; 121(5): 979-87.
[http://dx.doi.org/10.1016/j.jand.2020.05.012] [PMID: 32411575]
[94]
Turkish Geriatrics Society. COVID-19 pandemi sürecinde ileri yaş grubuna yaklaşım Available from: https://geriatri.org.tr/pdf/pandemi-surecinde-ileri-yas.pdf Accessed on Dec 11, 2021