Physical and Rheological Properties of Poly-floral Honey from the Iraqi Kurdistan Region and the Effect of Temperature on its Viscosity

Page: [532 - 544] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Aims: In this study, the physical and rheological properties of three poly-floral honey samples collected from different places in the Kurdistan region were determined.

Methods: The honey samples were analyzed for pH, free acidity, total ash content, moisture content, refractive index, soluble solids (Brix), electrical conductivity, volume expansion, density, specific heat capacity, surface tension, and rheological properties. The pH and free acidity of the honey samples varied from 4.10 to 4.81 to 30 to 62 mEq/kg, respectively. The total ash content ranged from 0.166 to 0.408%. The moisture content, soluble solids, and refractive index ranged from 15.60 to 16.60 g/100 g, 83.40 to 84.40, and 1.4998 to 1.5023, respectively. The electrical conductivity ranged from 40.896 to 44.471 mS/cm. The linear relationship between the electrical conductivity and the ash content was also calculated in this investigation. The volumetric expansion coefficient of the honey samples varied from 6.0098x10-4 to 6.69942x10-4 mm3/K. The density ranged from 1.42125995 to 1.45501137 g/cm3. The specific heat capacity varied from 2448.078 to 2575.004 J/kg.K. The surface tension varied from 0.2178 to 0.2282 N/m. The apparent viscosity was measured by Brookfield Viscometer, and the dynamic viscosity was measured by HAAKE Falling Ball Viscometer, after changing the temperature from 293 to 323 K.

Results and Discussion: The honey samples of lower moisture content showed a greater increase in their apparent and dynamic viscosities. Arrhenius model was used to describe the effect of temperature on the honey viscosity. This model was used to determine the activation energy. Other rheological properties such as kinematic viscosity and fluidity, were also determined.

Conclusion: All the honey samples behaved as Newtonian fluids in the whole temperature range.

Keywords: Poly-floral honey, rheological properties, viscosity, specific heat capacity, surface tension, newtonian fluids.

Graphical Abstract

[1]
Ruoff K, Karoui R, Dufour E, et al. Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study. J Agric Food Chem 2005; 53(5): 1343-7.
[http://dx.doi.org/10.1021/jf048384q] [PMID: 15740004]
[2]
Santos FKG, Dantas Filho AN, Leite RHL, Aroucha EMM, Santos AG, Oliveira TA. Rheological and some physicochemical characteristics of selected floral honeys from plants of caatinga. An Acad Bras Cienc 2014; 86(2): 981-94.
[http://dx.doi.org/10.1590/0001-3765201420130064] [PMID: 30514011]
[3]
El Sohaimy SA, Masry SHD, Shehata MG. Physicochemical characteristics of honey from different origins. Ann Agric Sci 2015; 60: 279-87.
[http://dx.doi.org/10.1016/j.aoas.2015.10.015]
[4]
Stihi C, Chelarescu ED, Duliu OG, Toma LG. Characterization of Romanian honey using physico-chemical parameters and the elemental content determined by analytical techniques. Rom Rep Phys 2016; 68: 362-9.
[5]
Iglesias A, Feás X, Rodrigues S, et al. Comprehensive study of honey with protected denomination of origin and contribution to the enhancement of legal specifications. Molecules 2012; 17(7): 8561-77.
[http://dx.doi.org/10.3390/molecules17078561] [PMID: 22805507]
[6]
Farcal LR, Mandru L, Oros NA. Heavy metals residues in animal products, in Maramures County during 1997-2008. Bulletin UASVM, 2009; 66(1-2): 135-40.
[7]
Bogdanov S, Bieri K, Figar M, et al. Définition et Directives pour l’Analyse et l’Appréciation. Livre Suisse des Denrées Alimentaires. OCFIM 1995; pp. 1-26.
[8]
Terrab A, Recamales AF, Hemanz D, Heredia FJ. Food Chem 2004; 88: 537-42.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.068]
[9]
Mistry RP. Analytical studies of honey, PhD Thesis. University of Salford: UK 1987.
[10]
White JW. The composition of honey. Bee World 1957; 38: 57-66.
[http://dx.doi.org/10.1080/0005772X.1957.11094976]
[11]
Sancho MT, Muniategui S, Sanchez MP, Huidobro JF, Simal J. Apidologie (Celle) 1991; 22: 487-94.
[http://dx.doi.org/10.1051/apido:19910501]
[12]
Yadata D. Food. Sci Tech (Paris) 2014; 5: 59-63.
[13]
Codex Standard for Honey, codex alimentarius commission. London 1999.
[14]
Junzheng P, Changying J. General rheological model for natural honeys in China. J Food Eng 1998; 36: 165-8.
[http://dx.doi.org/10.1016/S0260-8774(98)00050-8]
[15]
Abu-Jdayil B, Ghzawi AM, Al-Malah KIM, Zaitoun S. Heat effect on rheology of light- and dark-colored honey. J Food Eng 2002; 51: 33-8.
[http://dx.doi.org/10.1016/S0260-8774(01)00034-6]
[16]
Rehman S, Khan ZF, Maqbool T. Physical and spectroscopic characterization of Pakistani honey. Cienc Inv Agr 2008; 35: 199-204.
[17]
Kretavicius J, Kurtinaitiene B, Racys J, Ceksteryte V. Inactivation of glucose oxidase during heat-treatment de-crystallization of honey. Zemdirbyste Agr 2010; 97: 115-22.
[18]
Mehryar L, Esmaiili M, Hassanzadeh A. Evaluation of some physicochemical and rheological properties of Iranian honeys and the effect of temperature on its viscosity. Am-Eurasian J Agric Environ Sci 2013; 13: 807-19.
[19]
Almeida‐Muradian LB, Stramm KM, Horita A, Barth OM, Freitas AS, Estevinho LM. Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera. Int J Food Sci Technol 2013; 48: 1698-706.
[http://dx.doi.org/10.1111/ijfs.12140]
[20]
Rebiai A, Lanez T, Fund J. Comparative study of honey collected from different flora of Algeria. Appl Sci (Basel) 2014; 6: 48-55.
[21]
Tipler PA, Mosca G. Physics for Scientists and Engineers. New York: W.H. Freeman and Company 2008.
[22]
Oroian M. Measurement, prediction and correlation of density, viscosity, surface tension and ultrasonic velocity of different honey types at different temperatures. J Food Eng 2013; 119: 167-72.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.05.029]
[23]
Steffe JF. Rheological methods in food process engineering. 2nd ed. East Lansing: Freeman Press 1996.
[24]
Ibraz A, Barbosa-Canovas GV. Unit Operations in Food Engineering. Boca Raton: CRC Press, Taylor & Francis Group, LLC 2002.
[25]
Durmus A, Kasgoz A, Macosko CW. Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer (Guildf) 2017; 48: 4492-502.
[http://dx.doi.org/10.1016/j.polymer.2007.05.074]
[26]
Zhao J, Morgan AB, Harris JD. Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer (Guildf) 2005; 46: 8641-60.
[http://dx.doi.org/10.1016/j.polymer.2005.04.038]
[27]
Lazaridou A, Biliaderis CG, Bacandritsos N, Sabatini AG. Composition, thermal and rheological behaviour of selected Greek honeys. J Food Eng 2004; 64: 9-21.
[http://dx.doi.org/10.1016/j.jfoodeng.2003.09.007]
[28]
Juszczak L, Fortuna T. Effect of temperature and soluble solids content on the viscosity of cherry juice concentrate. Int Agrophys 2004; 18: 17-21.
[29]
Samanalieva J, Senge B. Analytical and rheological investigations into selected unifloral German honey. Eur Food Res Technol 2009; 229: 107-13.
[http://dx.doi.org/10.1007/s00217-009-1031-2]
[30]
Zaitoun S, Ghzawi AM, Al-Malah KIM, Abu-Jdayil B. Rheological properties of selected light colored jordanian honey. Int J Food Prop 2001; 4: 139-48.
[http://dx.doi.org/10.1081/JFP-100002192]
[31]
Chen YW, Lin CH, Wu FY, Chen HH. Rheological properties of crystallized honey prepared by a new type of nuclei. J Food Process Eng 2009; 32: 512-27.
[http://dx.doi.org/10.1111/j.1745-4530.2007.00227.x]
[32]
Bakier S. Pol J Food Nutr Sci 2007; 57: 17-23.
[33]
Haminiuk CWI, Maciel GM, Plata-Oviedo MSV, Quenehenn A, Scheer AP. Study of the rheological parameters of honey using the mitschka method. Int J Food Eng 2009; 5: 13.
[http://dx.doi.org/10.2202/1556-3758.1572]
[34]
Stelmakiene A, Ramanauskiene K, Briedis V, Leskauskaite D. Examination of rheological and physicochemical characteristics in Lithuanian honey. Afr J Biotechnol 2012; 11: 12406-14.
[35]
Travnicek P, Vitez T, Pridal A. Rheological properties of honey. Sci Agric Bohem 2012; 43: 160-5.
[http://dx.doi.org/10.7160/sab.2012.430406]
[36]
Costa PA, Moraes ICF, Bittante AMQB, Sobral PJA, Gomide CA, Carrer CC. Physical properties of honeys produced in the Northeast of Brazil. Int J Food Stud 2013; 2: 118-25.
[http://dx.doi.org/10.7455/ijfs/2.1.2013.a9]
[37]
Bozikova M, Hlavac P. Comparison of thermal and rheologic properties of Slovak mixed flower honey and forest honey. Res Agric Eng 2013; 59: S1-8.
[http://dx.doi.org/10.17221/43/2012-RAE]
[38]
Aljohar HI, Maher HM, Albaqami J, et al. Physical and chemical screening of honey samples available in the Saudi market: an important aspect in the authentication process and quality assessment. Saudi Pharm J 2018; 26(7): 932-42.
[http://dx.doi.org/10.1016/j.jsps.2018.04.013] [PMID: 30416348]
[39]
Bhandari B, D’Arcy B, Chow S. Rheology of selected Australian honeys. J Food Eng 1999; 41: 65-8.
[http://dx.doi.org/10.1016/S0260-8774(99)00078-3]
[40]
Mossel B, Bhandari B, D’Arcy B, Caffin N. Use of an Arrhenius model to predict rheological behaviour in some Australian honeys. LWT - Food. Sci Tech (Paris) 2000; 33: 545-2.
[41]
L. D. GmbH. Determining the volumetric expansion coefficient of liquids, LD DIDACTIC GmbH. Hürth 2012.
[42]
Askeland DR, Wright WJ. The Science and Engineering of Materials. 7th ed. Boston: Cengage Learning 2016.
[43]
Rao MA. Rheology of fluid and semisolid foods: principles and application. 2nd ed. Geneva: Springer Science 2007.
[http://dx.doi.org/10.1007/978-0-387-70930-7]
[44]
Nakayama Y. Introduction to fluid mechanics. 2nd ed. The Netherlands: Elsevier Ltd. 2018.
[45]
Ursulin-Trstenjak N, Levanic D, Primorac L, Bosnir J, Vahcic N, Saric G. Mineral profile of Croatian honey and differences due to its geographical origin. Czech J Food Sci 2015; 33: 156-64.
[http://dx.doi.org/10.17221/502/2014-CJFS]
[46]
Atanassova J, Lazarova M, Yurukova L. Significant parameters of Bulgarian honeydew honey. J Cent Eur Agric 2016; 17: 640-51.
[http://dx.doi.org/10.5513/JCEA01/17.3.1756]
[47]
Solayman M, Islam MA, Paul S, et al. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review. Compr Rev Food Sci Food Saf 2016; 15: 219-33.
[http://dx.doi.org/10.1111/1541-4337.12182]
[48]
Kharadze M, Abashidze N, Djaparidze I, Vanidze M, Kalandia A. Antioxidant activity of chestnut honey produced in Western Georgia. Bull Georgian Nat Acad Sci 2018; 12: 145-51.
[49]
Gomes S, Dias LG, Moreira LL, Rodrigues P, Estevinho L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem Toxicol 2010; 48(2): 544-8.
[http://dx.doi.org/10.1016/j.fct.2009.11.029] [PMID: 19909782]
[50]
Kivima E, Seiman A, Pall R, Sarapuu E, Martverk K, Laos K. Characterization of Estonian honeys by botanical origin. Proc Est Acad Sci 2014; 63: 183-92.
[http://dx.doi.org/10.3176/proc.2014.2.08]
[51]
Ahmed J, Prabhu ST, Raghavan GSV, Ngadi M. Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. J Food Eng 2007; 79: 1207-3.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.04.048]
[52]
Nanda V, Sarkar BC, Sharma HK, Bawa AS. Physico-chemical properties and estimation of mineral content in honey produced from different plants in Northern India. J Food Compos Anal 2003; 16: 613-9.
[http://dx.doi.org/10.1016/S0889-1575(03)00062-0]
[53]
Cano CB, Felsner ML, Matos JR, Bruns RE, Whatanabe HM, Almeida-Muradian LB. Comparison of methods for determining moisture content of citrus and eucalyptus brazilian honeys by refractometry. J Food Compos Anal 2001; 14: 101-9.
[http://dx.doi.org/10.1006/jfca.2000.0951]
[54]
Krause A, Zalewski RI. Classification of honeys by principal component analysis on the basis of chemical and physical parameters. Z Lebensm Unters Forsch 1991; 192: 19-23.
[http://dx.doi.org/10.1007/BF01201436]
[55]
Alphandery R, Route L, Miel D. Le grand livre des abeilles et de l'apiculture. Paris 2002; p. 254.
[56]
Schellart WP. J Struct Geol 2011; 33: 1079-88.
[http://dx.doi.org/10.1016/j.jsg.2011.03.013]
[57]
Sopade PA, Halley PJ, Darcy BR. Specific heat capacity of Australian honeys from 35 to 165C as a function of composition using differential scanning calorimetry. J Food Process Preserv 2006; 30: 99-109.
[http://dx.doi.org/10.1111/j.1745-4549.2006.00051.x]
[58]
Hlavac P, Bozikova M. Influence of selected factors on rheological properties of forest honey. J food phys 2014; 21-6.
[59]
Laos K, Harak M. The viscosity of supersaturated aqueous glucose, fructose and glucose-fructose solutions. J Food Phys 2014; 27-30.
[60]
Gomez-Diaz D, Navaza JM, Quintans-Riveiro LC. Effect of temperature on the viscosity of honey. Int J Food Prop 2009; 12: 396-404.
[http://dx.doi.org/10.1080/10942910701813925]
[61]
Haminiuk CWI, Maciel GM, Plata-Oviedo MSV, Quenehenn A, Scheer AP. Study of the rheological parameters of honey using the mitschka method. Int J Food Eng 2009; 5: 1-9.
[http://dx.doi.org/10.2202/1556-3758.1572]