Role of Gut Microbiota in Human Health and Diseases

Page: [374 - 383] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Every human body has a gut microbiome, which is a complex collection of microorganisms that live in the digestive tracts. The composition of the gut flora changes over time, when diet changes, overall health changes. Intestinal flora hosts more amounts of the microbes when compared to stomach flora as it is less vulnerable to the acidity of the gastric mucosa. Intestinal flora plays a major role in balancing the immune function as well as metabolic homeostasis, regulating inflammation, increasing mineral bioavailability, synthesizing neurotransmitters, regulating appetite and blood sugar and protecting against pathogens. Dysbiosis in the gut leads to various gastrointestinal disorders like inflammatory bowel disease, irritable bowel syndrome, peptic ulcer, metabolic syndromes like obesity, diabetes and various neurological disorders like autism, multiple sclerosis. Therefore, the complete wellness of our body is dependent on the microbial composition of the gut. Probiotics and prebiotic foods can add as a key element supplementing the wellness of our body.

Keywords: Microbiota, atherosclerosis, ulcer, obesity, cancer, multiple sclerosis, liver disease.

Graphical Abstract

[1]
Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol (NY) 2013; 9(9): 560-9.
[PMID: 24729765]
[2]
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J 2017; 474(11): 1823-36.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[3]
Gerritsen J, Smidt H, Rijkers GT, de Vos WM. Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 2011; 6(3): 209-40.
[http://dx.doi.org/10.1007/s12263-011-0229-7] [PMID: 21617937]
[4]
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148(6): 1258-70.
[http://dx.doi.org/10.1016/j.cell.2012.01.035] [PMID: 22424233]
[5]
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015; 26: 26191.
[PMID: 25651997]
[6]
Valdes AM. Role of the gut microbiota in nutrition and health. BMJ 2018; 361: Supp36-44.
[http://dx.doi.org/10.1136/bmj.k2179]
[7]
Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol 2017; 15(1): 127.
[http://dx.doi.org/10.1186/s12915-017-0454-7] [PMID: 29282061]
[8]
Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012; 3(4): 289-306.
[http://dx.doi.org/10.4161/gmic.19897] [PMID: 22572875]
[9]
Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014; 7(1): 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[10]
Marteau P. Bacterial flora in inflammatory bowel disease. Dig Dis 2009; 27(Suppl. 1): 99-103.
[http://dx.doi.org/10.1159/000268128] [PMID: 20203504]
[11]
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027-31.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[12]
Africa CWJ, Nel J, Stemmet M. Energy requirements. In: Exton-Smith AN, Caird FI, Eds. Metabolic and Nutritional Disorders in the Elderly. Bristol: John Wright and Sons Ltd 2014; 11(7): 6979-7000.
[http://dx.doi.org/10.3390/ijerph110706979] [PMID: 25014248]
[13]
Lakhan SE, Kirchgessner A. Gut inflammation in chronic fatigue syndrome. Nutr Metab (Lond) 2010; 7(79): 79.
[http://dx.doi.org/10.1186/1743-7075-7-79] [PMID: 20939923]
[14]
Schippa S, Conte MP. Dysbiotic events in gut microbiota: impact on human health Nutr. 2014; pp. 1-9.
[15]
Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci 2015; 16(4): 7493-519.
[http://dx.doi.org/10.3390/ijms16047493] [PMID: 25849657]
[16]
Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastroenterol Nutr 2015; 60(3): 294-307.
[http://dx.doi.org/10.1097/MPG.0000000000000597] [PMID: 25313849]
[17]
Rodriguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with emphasis on early life. Microb Ecol Health Dis 2015; 26(50): 1-17.
[18]
Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017; 18(1): 2.
[http://dx.doi.org/10.1186/s12865-016-0187-3] [PMID: 28061847]
[19]
den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54(9): 2325-40.
[http://dx.doi.org/10.1194/jlr.R036012] [PMID: 23821742]
[20]
Landete JM, Arqués J, Medina M, Gaya P, de Las Rivas B, Muñoz R. Bioactivation of phytoestrogens: intestinal bacteria and health. Crit Rev Food Sci Nutr 2016; 56(11): 1826-43.
[http://dx.doi.org/10.1080/10408398.2013.789823] [PMID: 25848676]
[21]
Rafii F. The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites 2015; 5: 56-73.
[22]
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107(33): 14691-6.
[http://dx.doi.org/10.1073/pnas.1005963107] [PMID: 20679230]
[23]
Pimentel M, Lembo A. Microbiome and its role in irritable bowel syndrome. Dig Dis Sci 2020; 65(3): 829-39.
[http://dx.doi.org/10.1007/s10620-020-06109-5] [PMID: 32026278]
[24]
Wang L, Alammar N, Singh R, et al. gut microbial dysbiosis in the irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. J Acad Nutr Diet 2020; 120(4): 565-86.
[http://dx.doi.org/10.1016/j.jand.2019.05.015] [PMID: 31473156]
[25]
Ponnusamy K, Choi JN, Kim J, Lee SY, Lee CH. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J Med Microbiol 2011; 60(Pt 6): 817-27.
[http://dx.doi.org/10.1099/jmm.0.028126-0] [PMID: 21330412]
[26]
Wall GC, Bryant GA, Bottenberg MM, Maki ED, Miesner AR. Irritable bowel syndrome: a concise review of current treatment concepts. World J Gastroenterol 2014; 20(27): 8796-806.
[PMID: 25083054]
[27]
Thompson WG, Longstreth GF, Drossman DA, Heaton KW, Irvine EJ, Müller-Lissner SA. Functional bowel disorders and functional abdominal pain. Gut 1999; 45(Suppl. 2): II43-7.
[http://dx.doi.org/10.1136/gut.45.2008.ii43] [PMID: 10457044]
[28]
Salem AE, Singh R, Ayoub YK, Khairy AM, Mullin GE. The gut microbiome and irritable bowel syndrome: state of art review. Arab J Gastroenterol 2018; 19(3): 136-41.
[http://dx.doi.org/10.1016/j.ajg.2018.02.008] [PMID: 29935865]
[29]
Ghoshal UC, Shukla R, Ghoshal U, Gwee KA, Ng SC, Quigley EM. The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflamm 2012; 2012: 151085.
[http://dx.doi.org/10.1155/2012/151085] [PMID: 22577594]
[30]
Pittayanon R, Lau JT, Yuan Y, et al. Gut microbiota in patients with irritable bowel syndrome: a systematic review. Gastroenterology 2019; 157(1): 97-108.
[http://dx.doi.org/10.1053/j.gastro.2019.03.049] [PMID: 30940523]
[31]
Ghoshal UC, Shukla R, Ghoshal U. Small intestinal bacterial overgrowth and irritable bowel syndrome: a bridge between functional organic dichotomy. Gut Liver 2017; 11(2): 196-208.
[http://dx.doi.org/10.5009/gnl16126] [PMID: 28274108]
[32]
Dai C, Zheng CQ, Jiang M, Ma XY, Jiang LJ. Probiotics and irritable bowel syndrome. World J Gastroenterol 2013; 19(36): 5973-80.
[http://dx.doi.org/10.3748/wjg.v19.i36.5973] [PMID: 24106397]
[33]
Wehkamp J, Götz M, Herrlinger K, Steurer W, Stange EF. Inflammatory bowel disease. Dtsch Arztebl Int 2016; 113(5): 72-82.
[PMID: 26900160]
[34]
Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 2004; 126(6): 1504-17.
[http://dx.doi.org/10.1053/j.gastro.2004.01.063] [PMID: 15168363]
[35]
Wallace KL, Zheng LB, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. World J Gastroenterol 2014; 20(1): 6-21.
[http://dx.doi.org/10.3748/wjg.v20.i1.6] [PMID: 24415853]
[36]
Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet 2007; 369(9573): 1627-40.
[http://dx.doi.org/10.1016/S0140-6736(07)60750-8] [PMID: 17499605]
[37]
Othman M, Agüero R, Lin HC. Alterations in intestinal microbial flora and human disease. Curr Opin Gastroenterol 2008; 24(1): 11-6.
[http://dx.doi.org/10.1097/MOG.0b013e3282f2b0d7] [PMID: 18043226]
[38]
Miyoshi J, Chang EB. The gut microbiota and inflammatory bowel diseases. Transl Res 2017; 179: 38-48.
[http://dx.doi.org/10.1016/j.trsl.2016.06.002] [PMID: 27371886]
[39]
Calam J, Baron JH. ABC of the upper gastrointestinal tract: pathophysiology of duodenal and gastric ulcer and gastric cancer. BMJ 2001; 323(7319): 980-2.
[http://dx.doi.org/10.1136/bmj.323.7319.980] [PMID: 11679389]
[40]
Dolan KT, Chang EB. Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Mol Nutr Food Res 2017; 61(1): 10.
[http://dx.doi.org/10.1002/mnfr.201600129] [PMID: 27346644]
[41]
Rapozo DC, Bernardazzi C, de Souza HS. Diet and microbiota in inflammatory bowel disease: the gut in disharmony. World J Gastroenterol 2017; 23(12): 2124-40.
[http://dx.doi.org/10.3748/wjg.v23.i12.2124] [PMID: 28405140]
[42]
Yang YJ, Sheu BS. Metabolic interaction of H. pylori infection and gut microbiota. Microorganisms 2016; 4(15): 1-10.
[43]
Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014; 146(6): 1489-99.
[http://dx.doi.org/10.1053/j.gastro.2014.02.009] [PMID: 24560869]
[44]
Yeo SH, Yang CH. [Peptic ulcer disease associated with Helicobacter pylori infection]. Korean J Gastroenterol 2016; 67(6): 289-99.
[http://dx.doi.org/10.4166/kjg.2016.67.6.289] [PMID: 27312829]
[45]
Alverdy JC, Hyoju SK, Weigerinck M, Gilbert JA. The gut microbiome and the mechanism of surgical infection. Br J Surg 2017; 104(2): e14-23.
[http://dx.doi.org/10.1002/bjs.10405] [PMID: 28121030]
[46]
Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 2006; 19(3): 449-90.
[http://dx.doi.org/10.1128/CMR.00054-05] [PMID: 16847081]
[47]
Tseng CH, Wu CY. The gut microbiome in obesity. J Formos Med Assoc 2019; 118(Suppl. 1): S3-9.
[http://dx.doi.org/10.1016/j.jfma.2018.07.009] [PMID: 30057153]
[48]
Thaiss CA. Microbiome dynamics in obesity. Science 2018; 362(6417): 903-4.
[http://dx.doi.org/10.1126/science.aav6870] [PMID: 30467161]
[49]
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022-3.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[50]
Kotzampassi K, Giamarellos-Bourboulis EJ, Stavrou G. Obesity as a consequence of gut bacteria and diet interactions Int Schol Res Not Obes . 2014; pp. 651-895.
[51]
Sanmiguel C, Gupta A, Mayer EA. Gut microbiome and obesity: a plausible explanation for obesity. Curr Obes Resp 2015; 4(2): 1-15.
[52]
Sotos M, Nadal I, Marti A, et al. Gut microbes and obesity in adolscents. Proceed Nutr Soc 2008; 67(OCE): E20.
[53]
Davis CD. The gut microbiome and its role in obesity. Nutr Today 2016; 51(4): 167-74.
[http://dx.doi.org/10.1097/NT.0000000000000167] [PMID: 27795585]
[54]
Gérard P. Gut microbiota and obesity. Cell Mol Life Sci 2016; 73(1): 147-62.
[http://dx.doi.org/10.1007/s00018-015-2061-5] [PMID: 26459447]
[55]
Qian LL, Li HT, Zhang L, Fang QC, Jia WP. Effect of the gut microbiota on obesity and its underlying mechanisms: an update. Biomed Environ Sci 2015; 28(11): 839-47.
[http://dx.doi.org/10.1016/S0895-3988(15)30116-1] [PMID: 26695364]
[56]
Al-Assar K, Martinez AC, Torrinhas RS, Cardinelli C, Waitzberg D. Gut microbiota and obesity. Clin Nutri Experi 2018; 20: 60-4.
[http://dx.doi.org/10.1016/j.yclnex.2018.03.001]
[57]
Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 2016; 7(3): 201-15.
[http://dx.doi.org/10.1080/19490976.2016.1150414] [PMID: 27003186]
[58]
Sun J, Kato I. Gut microbiota, inflammation and colorectal cancer. Genes Dis 2016; 3(2): 130-43.
[http://dx.doi.org/10.1016/j.gendis.2016.03.004] [PMID: 28078319]
[59]
Dzutsev A, Badger JH, Perez-Chanona E, et al. Microbes and cancer. Annu Rev Immunol 2017; 35: 199-228.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052133] [PMID: 28142322]
[60]
Rajagopala SV, Vashee S, Oldfield LM, et al. The human microbiome and cancer. Cancer Prev Res (Phila) 2017; 10(4): 226-34.
[http://dx.doi.org/10.1158/1940-6207.CAPR-16-0249] [PMID: 28096237]
[61]
Goodman B, Gardner H. The microbiome and cancer. J Pathol 2018; 244(5): 667-76.
[http://dx.doi.org/10.1002/path.5047] [PMID: 29377130]
[62]
Zitvogel L, Galluzzi L, Viaud S, et al. Cancer and the gut microbiota: an unexpected link. Sci Transl Med 2015; 7(271): 271ps1.
[http://dx.doi.org/10.1126/scitranslmed.3010473] [PMID: 25609166]
[63]
Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis 2014; 35(2): 249-55.
[http://dx.doi.org/10.1093/carcin/bgt392] [PMID: 24302613]
[64]
Belcheva A, Irrazabal T, Martin A. Gut microbial metabolism and colon cancer: can manipulations of the microbiota be useful in the management of gastrointestinal health? BioEssays 2015; 37(4): 403-12.
[http://dx.doi.org/10.1002/bies.201400204] [PMID: 25601287]
[65]
Wang X, Huycke MM. Colorectal cancer: role of commensal bacteria and bystander effects. Gut Microbes 2015; 6(6): 370-6.
[http://dx.doi.org/10.1080/19490976.2015.1103426] [PMID: 26727419]
[66]
Brennan CA, Garrett WS. Gut microbiota, inflammation and colorectal cancer. Annu Rev Microbiol 2016; 70(70): 395-411.
[http://dx.doi.org/10.1146/annurev-micro-102215-095513] [PMID: 27607555]
[67]
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 2018; 57(1): 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[68]
Yang Y, Tian J, Yang B. Targeting gut microbiome: a novel and potential therapy for autism. Life Sci 2018; 194: 111-9.
[http://dx.doi.org/10.1016/j.lfs.2017.12.027] [PMID: 29277311]
[69]
Fattorusso A, Di Genova L, Dell’Isola GB, Mencaroni E, Esposito S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients 2019; 11(3): 521.
[http://dx.doi.org/10.3390/nu11030521] [PMID: 30823414]
[70]
Qinrui Li. Yina, Han., Angel Belle, C.D & Hagerman, R.J. The gut microbiota and autism spectrum disorders. Front Cell Neurosci 2017; 11(120): 1-14.
[71]
Bruce-Keller AJ, Salbaum JM, Berthoud HR. Harnessing gut microbes for mental health: getting from here to there. Biol Psychiatry 2018; 83(3): 214-23.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.014] [PMID: 29031410]
[72]
Parracho HMRT, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 2005; 54(Pt 10): 987-91.
[http://dx.doi.org/10.1099/jmm.0.46101-0] [PMID: 16157555]
[73]
Strati F, Cavalieri D, Albanese D, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017; 5(1): 24.
[http://dx.doi.org/10.1186/s40168-017-0242-1] [PMID: 28222761]
[74]
De Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes 2015; 6(3): 207-13.
[http://dx.doi.org/10.1080/19490976.2015.1035855] [PMID: 25835343]
[75]
Coretti L, Paparo L, Riccio MP, et al. Gut Microbiota features in young children with Autism Spectrum Disorders. Front Microbiol 2018; 9: 3146.
[http://dx.doi.org/10.3389/fmicb.2018.03146] [PMID: 30619212]
[76]
Minemura M, Shimizu Y. Gut microbiota and liver diseases. World J Gastroenterol 2015; 21(6): 1691-702.
[http://dx.doi.org/10.3748/wjg.v21.i6.1691] [PMID: 25684933]
[77]
Llorente C, Schnabl B. The gut microbiota and liver disease. Cell Mol Gastroenterol Hepatol 2015; 1(3): 275-84.
[http://dx.doi.org/10.1016/j.jcmgh.2015.04.003] [PMID: 26090511]
[78]
Bajaj JS. Microbiome and complications of liver disease. Clin Liver Dis (Hoboken) 2015; 5(4): 96-9.
[http://dx.doi.org/10.1002/cld.460] [PMID: 31040960]
[79]
Brenner DA, Paik YH, Schnabl B. Role of gut microbiota in liver disease. J Clin Gastroenterol 2015; 49(1)(Suppl. 1): S25-7.
[http://dx.doi.org/10.1097/MCG.0000000000000391] [PMID: 26447960]
[80]
Nithin J, Mithun S, Rao PN, Reddy DN. Liver diseases: the role of gut microbiota and probiotics. JPH 2016; 4(3): 154.
[http://dx.doi.org/10.4172/2329-8901.1000154]
[81]
Nieuwenhuijzen GAP, Deitch EA, Goris RJ. The relationship between gut-derived bacteria and the development of the multiple organ dysfunction syndrome. J Anat 1996; 189(Pt 3): 537-48.
[PMID: 8982828]
[82]
Klingensmith NJ, Coopersmith CM. The gut as the motor multiple organ dysfunction in critical illness. Crit Care Clin 2016; 32(2): 203-12.
[http://dx.doi.org/10.1016/j.ccc.2015.11.004] [PMID: 27016162]
[83]
Boerner BP, Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci 2011; 1243: 103-18.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06340.x] [PMID: 22211896]
[84]
Russell JT, Triplett EW. Contrasting efforts: the microbiome and type 1 diabetes. Diabetes Case Rep 2017; 2(3): 129.
[http://dx.doi.org/10.4172/2572-5629.1000129]
[85]
Mejía-León ME, Barca AM. Diet, microbiota and immune system in type 1 diabetes development and evolution. Nutrients 2015; 7(11): 9171-84.
[http://dx.doi.org/10.3390/nu7115461] [PMID: 26561831]
[86]
Zhang Y, Zhang H. Microbiota associated with type 2 diabetes and its related complications. FSHW 2013; 2: 167-72.
[http://dx.doi.org/10.1016/j.fshw.2013.09.002]
[87]
Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig 2018; 9(1): 5-12.
[http://dx.doi.org/10.1111/jdi.12673] [PMID: 28390093]
[88]
Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr 2016; 63(10): 560-8.
[http://dx.doi.org/10.1016/j.endonu.2016.07.008] [PMID: 27633134]
[89]
Yamamura T, Miyake S. Diet, Gut flora, and multiple sclerosis: current research and future perspectives. Multiple sclerosis. Immunology 2013; 115-26.
[90]
Fan Y, Zhang J. Dietary modulation of intestinal microbiota: future opportunities in experimental autoimmune encephalomyelitis and multiple sclerosis. Front Microbiol 2019; 10: 740.
[http://dx.doi.org/10.3389/fmicb.2019.00740] [PMID: 31040833]
[91]
Mielcarz DW, Kasper LH. The gut microbiome in multiple sclerosis. Curr Treat Options Neurol 2015; 17(4): 344.
[http://dx.doi.org/10.1007/s11940-015-0344-7] [PMID: 25843302]
[92]
Kirby TO, Ochoa-Repáraz J. The gut microbiome in multiple sclerosis: a potential therapeutic avenue. Med Sci (Basel) 2018; 6(3): 69.
[http://dx.doi.org/10.3390/medsci6030069] [PMID: 30149548]
[93]
Pröbstel AK, Baranzini SE. The role of the gut microbiome in multiple sclerosis risk and progression: towards characterization of “MS Microbiome”. Neurotherapeutics 2018; 15(1): 126-34.
[http://dx.doi.org/10.1007/s13311-017-0587-y] [PMID: 29147991]
[94]
Wu X, He B, Liu J, et al. Molecular insights into gut microbiota and rheumatoid arthritis. Int J Mol Sci 2016; 17(3): 431.
[http://dx.doi.org/10.3390/ijms17030431] [PMID: 27011180]
[95]
Jethwa H, Abraham S. The evidence for microbiome manipulation in inflammatory arthritis. Rheumatology (Oxford) 2017; 56(9): 1452-60.
[PMID: 27789760]
[96]
Ciccia F, Ferrante A, Guggino G, Triolo G. The role of the gastrointestinal tract in the pathogenesis of rheumatic diseases. Best Pract Res Clin Rheumatol 2016; 30(5): 889-900.
[http://dx.doi.org/10.1016/j.berh.2016.10.003] [PMID: 27964794]
[97]
Maeda Y, Takeda K. Role of gut microbiota in rheumatoid arthritis. J Clin Med 2017; 6(6): 60.
[http://dx.doi.org/10.3390/jcm6060060] [PMID: 28598360]
[98]
Pianta A, Arvikar S, Strle K, et al. Evidence for immune relevance of Prevotella copri, a gut microbe in patients with rheumatoid arthritis. Arthritis Rheumatol 2017; 69(5): 964-75.
[http://dx.doi.org/10.1002/art.40003] [PMID: 27863183]
[99]
Latalova K, Hajda M, Prasko J. Can gut microbes play a role in mental disorders and their treatment? Psychiatr Danub 2017; 29(1): 28-30.
[http://dx.doi.org/10.24869/psyd.2017.28] [PMID: 28291971]
[100]
MacQueen G, Surette M, Moayyedi P. The gut microbiota and psychiatric illness. J Psychiatry Neurosci 2017; 42(2): 75-7.
[http://dx.doi.org/10.1503/jpn.170028] [PMID: 28245172]
[101]
Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota’s effect on mental health: the gut-brain axis. Clin Pract 2017; 7(4): 987.
[http://dx.doi.org/10.4081/cp.2017.987] [PMID: 29071061]
[102]
Gulas E, Wysiadecki G, Strzelecki D, Gawlik-Kotelnicka O, Polguj M. Can microbiology affect psychiatry? A link between gut microbiota and psychiatric disorders. Psychiatr Pol 2018; 91: 1-18.
[http://dx.doi.org/10.12740/PP/OnlineFirst/81103]
[103]
Petyaev IM, Bashmakov YK. Gut microbiota and atherosclerosis: Emerging questions. Exp Clin Cardiol 2014; 20(7): 982-1001.
[104]
Barrington WT, Lusis AJ. Atherosclerosis: association between the gut microbiome and atherosclerosis. Nat Rev Cardiol 2017; 14(12): 699-700.
[http://dx.doi.org/10.1038/nrcardio.2017.169] [PMID: 29099096]
[105]
Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 2017; 8(1): 845.
[http://dx.doi.org/10.1038/s41467-017-00900-1] [PMID: 29018189]
[106]
Loscalzo J. Lipid metabolism by gut microbes and atherosclerosis. Circ Res 2011; 109(2): 127-9.
[http://dx.doi.org/10.1161/RES.0b013e3182290620] [PMID: 21737814]
[107]
Spence JD. Intestinal microbiome and atherosclerosis. EBioMedicine 2016; 13: 17-8.
[http://dx.doi.org/10.1016/j.ebiom.2016.10.033] [PMID: 27887937]
[108]
Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res 2017; 120(7): 1183-96.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309715] [PMID: 28360349]
[109]
Caesar R, Fåk F, Bäckhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med 2010; 268(4): 320-8.
[http://dx.doi.org/10.1111/j.1365-2796.2010.02270.x] [PMID: 21050286]
[110]
Vyboh K, Jenabian MA, Mehraj V, Routy JP. HIV and the gut microbiota, partners in crime: breaking the vicious cycle to unearth new therapeutic targets. J Immunol Res 2015; 2015: 614127.
[http://dx.doi.org/10.1155/2015/614127] [PMID: 25759844]
[111]
Nwosu FC, Avershina E, Wilson R, Rudi K. Gut microbiota in hiv infection: implication for disease progression and management. Gastro Res Prac. 2014; pp. 1-6.
[112]
D’Angelo C, Reale M, Costantini E. Microbiota and probiotics in health and HIV infection. Nutrients 2017; 9(6): 1-15.
[PMID: 28621726]
[113]
Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. The gut microbiome in human immunodeficiency virus infection. BMC Med 2016; 14(1): 83.
[http://dx.doi.org/10.1186/s12916-016-0625-3] [PMID: 27256449]
[114]
Dubourg G, Lagier JC, Hüe S, et al. Gut microbiota associated with HIV infection is significantly enriched in bacteria tolerant to oxygen. BMJ Open Gastroenterol 2016; 3(1): e000080.
[http://dx.doi.org/10.1136/bmjgast-2016-000080] [PMID: 27547442]
[115]
Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 2016; 4(3): 220-7.
[http://dx.doi.org/10.1016/j.jchf.2015.10.009] [PMID: 26682791]
[116]
Tang WHW, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest 2014; 124(10): 4204-11.
[http://dx.doi.org/10.1172/JCI72331] [PMID: 25271725]
[117]
Deng ZL, Szafrański SP, Jarek M, Bhuju S, Wagner-Döbler I. Dysbiosis in chronic periodontitis: key microbial players and interactions with the human host. Sci Rep 2017; 7(1): 3703.
[http://dx.doi.org/10.1038/s41598-017-03804-8] [PMID: 28623321]
[118]
Nath SG, Raveendran R. Microbial dysbiosis in periodontitis. J Indian Soc Periodontol 2013; 17(4): 543-5.
[http://dx.doi.org/10.4103/0972-124X.118334] [PMID: 24174742]
[119]
Ebersole JL, Dawson D III, Emecen-Huja P, et al. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75(1): 52-115.
[http://dx.doi.org/10.1111/prd.12222] [PMID: 28758303]