Abstract
Background: Economic development and vast changes in food habits have accelerated
the consumption of junk foods, which are the leading causes of several disorders that turn the majority
of the people to use various herbal formulations or drugs for preventing various lifestyle diseases.
Nutraceuticals are the borderline apparatus between nutrients and drugs that provide supplementation
of the particular nutrient with a favorable health effect.
Objective: Various nutraceutical compounds like vitamins, spices, polyphenols, prebiotics, and probiotics
in the form of powders, tablets, and capsules are currently marketed globally. Among them,
previous literature have reported that polyphenols are the most promising compounds that have
been proven to treat various chronic diseases like cancer, hypertension, diabetes mellitus (DM), osteoporosis,
osteoarthritis, dyslipidemia, multiple sclerosis, congenital anomalies, Alzheimer’s disease,
etc. It is warranted to discuss the benefits of nanoformulations of nutraceuticals.
Methods: We have searched PubMed using the keywords nutraceuticals, nanoformulations, therapeutic
approaches, bionanotechnology, and therapeutics. The relevant papers and classical papers
in this field were selected to write this review.
Results and Discussion: The different classifications of nutraceuticals were described in this review.
The comparison between the different categories of nutraceuticals with their nanoformulated
forms was made, explaining the benefits of nanoformulations regarding stability, bioavailability,
enhanced anti-oxidant properties, etc. A glimpse of the drawbacks of nanoformulations was also included.
Conclusion: The current review highlights an overview of various nanoformulated nutraceuticals
and their approach towards the treatment of multiple diseases.
Keywords:
Nutraceuticals, nanoformulations, therapeutic approaches, bionanotechnology, therapeutics, flavanoids.
Graphical Abstract
[2]
Saldanha SN, Trygve OT. The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes J Oncol 2012; 1-13.
[29]
Pandey M, Verma RK, Saraf SA. Nutraceuticals: new era of medicine and health. Asian J Pharm Clin Res 2012; 3(1): 11-5.
[33]
Yoshinori M, Eunice L-C, Bo J. Biological active food proteins and peptides in health: an overview Bioactive proteins and peptides as functional foods and nutraceuticals (1st Ed) Germany Blackwell Publishing Ltd . 2010; pp. 5-12.
[39]
EFSA. Scientific opinion on the safety of green tea catechins EFSA J. 2018; 16: p. (4)5239..
[41]
Zu YG, Yuan S, Zhao XH, Zhang Y, Zhang XN, Jiang R. [Preparation, activity and targeting ability evaluation in vitro on folate mediated epigallocatechin-3-gallate albumin nanoparticles]. Yao Xue Xue Bao 2009; 44(5): 525-31. [PMID: 19618731]
[61]
Pool H, Quintanar D, Figueroa JD, et al. Antioxidant effects of quercetin and catechin encapsulated into PLGA nanoparticles J Nanomater 2012; 1-12.
[103]
D’Andria R, Di Salle A, Petillo O, Sorrentino G, Peluso G. Nutraceutical, cosmetic, health products derived from olive. Present and future of the Mediterranean olive sector Options méditerranéennes SERIES A: Mediterranean Seminars, CIHEAM 2013; OM A106 2013; 153-61.
[107]
Katas H, Amin MCI, Sahudin S, Buang F. Chitosan-based skin-targeted nanoparticle drug delivery system and method WIPO(PCT). WO2015072846A1, 2013.
[119]
Panneerselvam S, Kumpati P. Formulation characterization and pharmacokinetic evaluation of naringenin- loaded gastroretentive mucoadhesive polymeric nanosystem for oral drug delivery. J Drug Deliv Ther 2015; 5(2): 107-14.
[121]
Gokuladhas K, Jayakumar S, Madankumar A, et al. Synthesis and characterization of biocompatible gold nanoparticles stabilized with hydrophilic polymer coated hesperetin drug for sustained drug delivery to treat hepatocellular carcinoma-derived cancer cells. J Pharm Res 2014; 8(2): 98-105.