Current Nutrition & Food Science

Author(s): Tabinda Sattar*

DOI: 10.2174/1573401316666200514224433

Would Some Herbal Teas Play a Medicating Role for Certain Diseases?

Page: [176 - 188] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain many useful nutrients that may be a good replacement for medicating certain diseases. These herbal teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation, anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease, constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas due to which these can be an attractive alternative towards promoting human health.

Keywords: Anti-depressant, anti-inflammatory, anti-oxidant, flowers herbal tea, fruits herbal tea, leaves herbal tea, roots herbal tea.

Graphical Abstract

[1]
Ashihara H, Kubota H. Biosynthesis of purine alkaloids in Camellia plants. Plant Cell Physiol 1987; 28(3): 535-9.
[http://dx.doi.org/10.1094/Phyto-77-631]
[2]
Auvichayapat P, Prapochanung M, Tunkamnerdthai O, et al. Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial. Physiol Behav 2008; 93(3): 486-91.
[http://dx.doi.org/10.1016/j.physbeh.2007.10.009] [PMID: 18006026]
[3]
Axling U, Olsson C, Xu J, et al. Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice. Nutr Metab (Lond) 2012; 9(1): 105.
[http://dx.doi.org/10.1186/1743-7075-9-105] [PMID: 23181558]
[4]
Baba R, Kumazawa K. Characterization of the potent odorants contributing to the characteristic aroma of Chinese green tea infusions by aroma extract dilution analysis. J Agric Food Chem 2014; 62(33): 8308-13.
[http://dx.doi.org/10.1021/jf502308a] [PMID: 25088347]
[5]
Basu A, Betts NM, Mulugeta A, et al. Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome. Nutr Res 2013; 33(3): 180-7.
[http://dx.doi.org/10.1016/j.nutres.2012.12.010] [PMID: 23507223]
[6]
Basu A, Sanchez K, Leyva MJ, et al. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr 2010; 29(1): 31-40.
[http://dx.doi.org/10.1080/07315724.2010.10719814] [PMID: 20595643]
[7]
Beecher GR. Proanthocyanidins: biological activities associated with human health Pharm Biol 2004; 42(sup1): 2-20.
[8]
Bogdanski P, Suliburska J, Szulinska M, et al. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res 2012; 32(6): 421-7.
[http://dx.doi.org/10.1016/j.nutres.2012.05.007] [PMID: 22749178]
[9]
Boggs DA, Palmer JR, Stampfer MJ, et al. Tea and coffee intake in relation to risk of breast cancer in the Black Women’s Health Study. Cancer Causes Control 2010; 21(11): 1941-8.
[http://dx.doi.org/10.1007/s10552-010-9622-6] [PMID: 20680436]
[10]
Braem MG, Onland-Moret NC, Schouten LJ, et al. Coffee and tea consumption and the risk of ovarian cancer: a prospective cohort study and updated meta-analysis. Am J Clin Nutr 2012; 95(5): 1172-81.
[http://dx.doi.org/10.3945/ajcn.111.026393] [PMID: 22440851]
[11]
Chen G, Xie M, Dai Z, et al. Kudingcha and fuzhuan brick tea prevent obesity and modulate gut microbiota in high‐fat diet fed mice. Mol Nutr Food Res 2018; 62(6)e1700485
[http://dx.doi.org/10.1002/mnfr.201700485] [PMID: 29345748]
[12]
Nechuta S, Shu XO, Li HL, et al. Prospective cohort study of tea consumption and risk of digestive system cancers: results from the Shanghai Women’s Health Study. Am J Clin Nutr 2012; 96(5): 1056-63.
[http://dx.doi.org/10.3945/ajcn.111.031419] [PMID: 23053557]
[13]
Ning J, Li D, Luo X, et al. Stepwise identification of six tea (Camellia sinensis (L.)) categories based on catechins, caffeine, and theanine contents combined with Fisher discriminant analysis. Food Anal Methods 2016; 9(11): 3242-50.
[http://dx.doi.org/10.1007/s12161-016-0518-2]
[14]
Oi Y, Hou IC, Fujita H, et al. Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid. Phytother Res 2012; 26(4): 475-81.
[http://dx.doi.org/10.1002/ptr.3602] [PMID: 22508359]
[15]
Omiadze NT, Mchedlishvili NI, Rodrigez-Lopes KhN, et al. [Biochemical processes at the stage of withering during black tea production]. Prikl Biokhim Mikrobiol 2014; 50(4): 437-41.
[http://dx.doi.org/10.7868/S0555109914040266] [PMID: 25707121]
[16]
Peng X, Zhou R, Wang B, et al. Effect of green tea consumption on blood pressure: a meta-analysis of 13 randomized controlled trials. Sci Rep 2014; 4: 6251.
[http://dx.doi.org/10.1038/srep06251] [PMID: 25176280]
[17]
Pérez-Burillo S, Giménez R, Rufián-Henares JA, et al. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: relationship with sensory properties. Food Chem 2018; 248: 111-8.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.056] [PMID: 29329833]
[18]
Qi D, Miao A, Cao J, et al. Study on the effects of rapid aging technology on the aroma quality of white tea using GC-MS combined with chemometrics: in comparison with natural aged and fresh white tea. Food Chem 2018; 265: 189-99.
[http://dx.doi.org/10.1016/j.foodchem.2018.05.080] [PMID: 29884372]
[19]
San Cheang W, Yuen Ngai C, Yen Tam Y, et al. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress. Sci Rep 2015; 5: 10340.
[http://dx.doi.org/10.1038/srep10340] [PMID: 25976123]
[20]
Sanlier N, Atik İ, Atik A. A minireview of effects of white tea consumption on diseases. Trends Food Sci Technol 2018; 82: 82-8.
[http://dx.doi.org/10.1016/j.tifs.2018.10.004]
[21]
Sanlier N, Gokcen BB, Altuğ M. Tea consumption and disease correlations. Trends Food Sci Technol 2018; 78: 95-106.
[http://dx.doi.org/10.1016/j.tifs.2018.05.026]
[22]
Santos JS, Deolindo CTP, Hoffmann JF, et al. Optimized Camellia sinensis var. sinensis, Ilex paraguariensis, and Aspalathus linearis blend presents high antioxidant and antiproliferative activities in a beverage model. Food Chem 2018; 254: 348-58.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.021] [PMID: 29548463]
[23]
Sasaki T, Koshi E, Take H, et al. Characterisation of odorants in roasted stem tea using gas chromatography-mass spectrometry and gas chromatography-olfactometry analysis. Food Chem 2017; 220: 177-83.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.208] [PMID: 27855886]
[24]
Zheng Q, Kebede MT, Kemeh MM, et al. Inhibition of the self-assembly of Aβ and of Tau by polyphenols: mechanistic studies. Molecules 2019; 24(12): 2316.
[http://dx.doi.org/10.3390/molecules24122316] [PMID: 31234523]
[25]
Gao T, Wang Y, Zhang C, et al. Classification of tea aromas using multi-nanoparticle based chemiresistor arrays. Sensors (Basel) 2019; 19(11): 2547.
[http://dx.doi.org/10.3390/s19112547] [PMID: 31167394]
[26]
Miyata Y, Matsuo T, Mitsunari K, et al. A review of oxidative stress and urinary dysfunction caused by bladder outlet obstruction and treatments using antioxidants. Antioxidants 2019; 8(5): 132.
[http://dx.doi.org/10.3390/antiox8050132] [PMID: 31096597]
[27]
Ueda-Wakagi M, Nagayasu H, Yamashita Y, et al. Green tea ameliorates hyperglycemia by promoting the translocation of glucose transporter 4 in the skeletal muscle of diabetic rodents. Int J Mol Sci 2019; 20(10): 2436.
[http://dx.doi.org/10.3390/ijms20102436] [PMID: 31100973]
[28]
Kim H, Hiraishi A, Tsuchiya K, et al. (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology 2010; 62(3): 245-55.
[http://dx.doi.org/10.1007/s10616-010-9285-x] [PMID: 20596890]
[29]
Scoparo CT, de Souza LM, Rattmann YD, et al. Polysaccharides from green and black teas and their protective effect against murine sepsis. Food Res Int 2013; 53(2): 780-5.
[http://dx.doi.org/10.1016/j.foodres.2012.11.006]
[30]
Song JH, Miyazaki H, Yoshida S. Simple method for the preparation of teadenols A and B by a combined process of submerged culture with Aspergillus sp. and chromatographic separation. Food Sci Technol Res 2017; 23(1): 91-100.
[http://dx.doi.org/10.3136/fstr.23.91]
[31]
Suliburska J, Bogdanski P, Szulinska M, et al. Effects of green tea supplementation on elements, total antioxidants, lipids, and glucose values in the serum of obese patients. Biol Trace Elem Res 2012; 149(3): 315-22.
[http://dx.doi.org/10.1007/s12011-012-9448-z] [PMID: 22581111]
[32]
Tang W, Li S, Liu Y, et al. Anti‐diabetic activity of chemically profiled green tea and black tea extracts in a type 2 diabetes mice model via different mechanisms. J Funct Foods 2013; 5(4): 1784-93.
[http://dx.doi.org/10.1016/j.jff.2013.08.007] [PMID: 24443655]
[33]
Tao W, Zhou Z, Zhao B, et al. Simultaneous determination of eight catechins and four theaflavins in green, black and oolong tea using new HPLC-MS-MS method. J Pharm Biomed Anal 2016; 131: 140-5.
[http://dx.doi.org/10.1016/j.jpba.2016.08.020] [PMID: 27589031]
[34]
Tian LW, Tao MK, Xu M, et al. Carboxymethyl-and carboxyl-catechins from ripe Pu-er tea. J Agric Food Chem 2014; 62(50): 12229-34.
[http://dx.doi.org/10.1021/jf5036959] [PMID: 25455197]
[35]
Wang H, Shi S, Bao B, et al. Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohydr Polym 2015; 124: 98-108.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.070] [PMID: 25839799]
[36]
Wang J, Tang L, Zhou H, et al. Long-term treatment with green tea polyphenols modifies the gut microbiome of female sprague-dawley rats. J Nutr Biochem 2018; 56: 55-64.
[http://dx.doi.org/10.1016/j.jnutbio.2018.01.005] [PMID: 29454999]
[37]
Wang K, Liu F, Liu Z, et al. Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer. Int J Food Sci Technol 2011; 46(7): 1406-12.
[http://dx.doi.org/10.1111/j.1365-2621.2011.02629.x]
[38]
Wang Q, Peng C, Gong J. Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. J Sci Food Agric 2011; 91(13): 2412-8.
[http://dx.doi.org/10.1002/jsfa.4480] [PMID: 21656777]
[39]
Wang W, Tang X, Hua F, et al. Camellimidazole A-C, three methylene‐bridged dimeric imidazole alkaloids from Keemun black tea. Org Lett 2018; 20(9): 2672-5. a
[http://dx.doi.org/10.1021/acs.orglett.8b00878] [PMID: 29676581]
[40]
Wang W, Zhang L, Wang S, et al. 8-C N-ethyl-2-pyrrolidinone substituted flavan-3-ols as the marker compounds of Chinese dark teas formed in the post-fermentation process provide significant antioxidative activity. Food Chem 2014; 152: 539-45.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.117] [PMID: 24444972]
[41]
Weerawatanakorn M, Hung WL, Pan MH, et al. Chemistry and health beneficial effects of oolong tea and theasinensins. Food Sci Hum Wellness 2015; 4(4): 133-46.
[http://dx.doi.org/10.1016/j.fshw.2015.10.002]
[42]
Wei C, Yang H, Wang S, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 2018; 115(18): E4151-8.
[http://dx.doi.org/10.1073/pnas.1719622115] [PMID: 29678829]
[43]
Chen H, Wang Z, Lu X, et al. Isolation and chemical characterisation of a polysaccharide from green tea (Camellia sinensis L.). J Sci Food Agric 2008; 88(14): 2523-8.
[http://dx.doi.org/10.1002/jsfa.3375]
[44]
Chen IJ, Liu CY, Chiu JP, et al. Therapeutic effect of high-dose green tea extract on weight reduction: a randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2016; 35(3): 592-9.
[http://dx.doi.org/10.1016/j.clnu.2015.05.003] [PMID: 26093535]
[45]
Chen Q, Zhu Y, Dai W, et al. Aroma formation and dynamic changes during white tea processing. Food Chem 2019; 274: 915-24.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.072] [PMID: 30373028]
[46]
Chen X, Xie J, Huang W, et al. Comparative analysis of physicochemical characteristics of green tea polysaccharide conjugates and its decolored fraction and their effect on HepG2 cell proliferation. Ind Crops Prod 2019; 131: 243-9.
[http://dx.doi.org/10.1016/j.indcrop.2019.01.061]
[47]
Cheng J, Wu FH, Wang P, et al. Flavoalkaloids with a pyrrolidinone ring from Chinese ancient cultivated tea Xi‐Gui. J Agric Food Chem 2018; 66(30): 7948-57. a
[http://dx.doi.org/10.1021/acs.jafc.8b02266] [PMID: 29976052]
[48]
Cheng M, Zhang X, Zhu J, et al. A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols. Food Funct 2018; 9(2): 1079-87.
[http://dx.doi.org/10.1039/C7FO01570D] [PMID: 29355278]
[49]
Corey ME, Kerr WL, Mulligan JH, et al. Phytochemical stability in dried apple and green tea functional products as related to moisture properties. Lebensm Wiss Technol 2011; 44(1): 67-74.
[http://dx.doi.org/10.1016/j.lwt.2010.07.005]
[50]
del Hierro JN, Herrera T, Fornari T, et al. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities. J Funct Foods 2018; 40: 484-97.
[http://dx.doi.org/10.1016/j.jff.2017.11.032]
[51]
Drynan JW, Clifford MN, Obuchowicz J, et al. MALDI-TOF mass spectrometry: avoidance of artifacts and analysis of caffeine-precipitated SII thearubigins from 15 commercial black teas. J Agric Food Chem 2012; 60(18): 4514-25.
[http://dx.doi.org/10.1021/jf205125y] [PMID: 22509842]
[52]
Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 2018; 210: 296-310.
[http://dx.doi.org/10.1016/j.jep.2017.08.035] [PMID: 28864169]
[53]
Fan FY, Shi M, Nie Y, et al. Differential behaviors of tea catechins under thermal processing: formation of non-enzymatic oligomers. Food Chem 2016; 196: 347-54.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.056] [PMID: 26593500]
[54]
Fiori J, Pasquini B, Caprini C, et al. Chiral analysis of theanine and catechin in characterization of green tea by cyclodextrin-modified micellar electrokinetic chromatography and high performance liquid chromatography. J Chromatogr A 2018; 1562: 115-22.
[http://dx.doi.org/10.1016/j.chroma.2018.05.063] [PMID: 29859684]
[55]
Genkinger JM, Li R, Spiegelman D, et al. Coffee, tea, and sugar-sweetened carbonated soft drink intake and pancreatic cancer risk: a pooled analysis of 14 cohort studies. Cancer Epidemiol Biomarkers Prev 2012; 21(2): 305-18.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-0945-T] [PMID: 22194529]
[56]
Geybels MS, Verhage BA, Arts IC, et al. Dietary flavonoid intake, black tea consumption, and risk of overall and advanced stage prostate cancer. Am J Epidemiol 2013; 177(12): 1388-98.
[http://dx.doi.org/10.1093/aje/kws419] [PMID: 23722011]
[57]
Granato D, do Prado‐Silva L, Alvarenga VO, et al. Characterization of binary and ternary mixtures of green, white and black tea extracts by electrospray ionization mass spectrometry and modeling of their in vitro antibacterial activity. Lebensm Wiss Technol 2016; 65: 414-20.
[http://dx.doi.org/10.1016/j.lwt.2015.08.037]
[58]
Granato D, Nunes DS, Barba FJ. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: a proposal. Trends Food Sci Technol 2017; 62: 13-22.
[http://dx.doi.org/10.1016/j.tifs.2016.12.010]
[59]
Grassi D, Draijer R, Desideri G, et al. Black tea lowers blood pressure and wave reflections in fasted and postprandial conditions in hypertensive patients: a randomised study. Nutrients 2015; 7(2): 1037-51.
[http://dx.doi.org/10.3390/nu7021037] [PMID: 25658240]
[60]
Guo X, Song C, Ho CT, et al. Contribution of l-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in Oolong tea during manufacturing processes. Food Chem 2018; 263: 18-28.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.117] [PMID: 29784304]
[61]
Heber D, Zhang Y, Yang J, et al. Green tea, black tea, and oolong tea polyphenols reduce visceral fat and inflammation in mice fed high-fat, high-sucrose obesogenic diets. J Nutr 2014; 144(9): 1385-93.
[http://dx.doi.org/10.3945/jn.114.191007] [PMID: 25031332]
[62]
Henning SM, Yang J, Hsu M, et al. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur J Nutr 2018; 57(8): 2759-69.
[http://dx.doi.org/10.1007/s00394-017-1542-8] [PMID: 28965248]
[63]
Inoue M, Kurahashi N, Iwasaki M, et al. Japan Public Health Center-Based Prospective Study Group Effect of coffee and green tea consumption on the risk of liver cancer: cohort analysis by hepatitis virus infection status. Cancer Epidemiol Biomarkers Prev 2009; 18(6): 1746-53.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0923] [PMID: 19505908]
[64]
Ishimaru K, Kanegae A, Sakamoto A, et al. Concentrations of teadenols in various Chinese tea products. Jpn J Food Chem Safety 2012; 19(3): 191-6.
[http://dx.doi.org/10.18891/jjfcs.19.3_191]
[65]
Jiang HY, Shii T, Matsuo Y, et al. A new catechin oxidation product and polymeric polyphenols of post-fermented tea. Food Chem 2011; 129(3): 830-6.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.031] [PMID: 25212306]
[66]
Jin JQ, Chai YF, Liu YF, et al. Hongyacha, a naturally caffeine‐free tea plant from Fujian, China. J Agric Food Chem 2018; 66(43): 11311-9.
[http://dx.doi.org/10.1021/acs.jafc.8b03433] [PMID: 30303011]
[67]
Jin JQ, Ma JQ, Ma CL, et al. Determination of catechin content in representative Chinese tea germplasms. J Agric Food Chem 2014; 62(39): 9436-41.
[http://dx.doi.org/10.1021/jf5024559] [PMID: 25204786]
[68]
Jin JS, Touyama M, Hisada T, et al. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species. Microbiol Immunol 2012; 56(11): 729-39.
[http://dx.doi.org/10.1111/j.1348-0421.2012.00502.x] [PMID: 22924537]
[69]
Jing Y, Han G, Hu Y, et al. Tea consumption and risk of type 2 diabetes: a meta-analysis of cohort studies. J Gen Intern Med 2009; 24(5): 557-62.
[http://dx.doi.org/10.1007/s11606-009-0929-5] [PMID: 19308337]
[70]
Kemperman RA, Gross G, Mondot S, et al. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res Int 2013; 53(2): 659-69.
[http://dx.doi.org/10.1016/j.foodres.2013.01.034]
[71]
Kim HS, Montana V, Jang HJ, et al. Epigallocatechin gallate (EGCG) stimulates autophagy in vascular endothelial cells: a potential role for reducing lipid accumulation. J Biol Chem 2013; 288(31): 22693-705.
[http://dx.doi.org/10.1074/jbc.M113.477505] [PMID: 23754277]
[72]
Kim HS, Quon MJ, Kim JA. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2014; 2: 187-95.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[73]
Alagawany M, Abd El‐Hack ME, Saeed M, et al. Nutritional applications and beneficial health applications of green tea and l ‐theanine in some animal species: a review. J Anim Physiol Anim Nutr (Berl) 2019; 24.
[http://dx.doi.org/10.1111/jpn.13219] [PMID: 31595607]
[74]
Chanthick C, Thongboonkerd V. Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol 2019; 378114621
[http://dx.doi.org/10.1016/j.taap.2019.114621] [PMID: 31195006]
[75]
Durazzo A, Lucarini M, Souto EB, et al. Polyphenols: a concise overview on the chemistry, occurrence, and human health. Phytother Res 2019; 33(9): 2221-43.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[76]
Ciulla M, Marinelli L, Cacciatore I, et al. Role of dietary supplements in the management of Parkinson’s Disease. Biomolecules 2019; 9(7): 271.
[http://dx.doi.org/10.3390/biom9070271] [PMID: 31295842]
[77]
Kim Y, Goodner KL, Par KJD, et al. Changes in antioxidant phytochemicals and volatile composition of Camellia sinensis by oxidation during tea fermentation. Food Chem 2011; 129(4): 1331-42.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.012]
[78]
Koch W, Kukula-Koch W, Komsta Ł. Black tea samples origin discrimination using analytical investigations of secondary metabolites, antiradical scavenging activity and chemometric approach. Molecules 2018; 23(3)E513
[http://dx.doi.org/10.3390/molecules23030513] [PMID: 29495365]
[79]
Koch W, Kukula-Koch W, Komsta Ł, et al. Green tea quality evaluation based on its catechins and metals composition in combination with chemometric analysis. Molecules 2018; 23(7)E1689
[http://dx.doi.org/10.3390/molecules23071689] [PMID: 29997337]
[80]
Kusano R, Matsuo Y, Saito Y, et al. Oxidation mechanism of black tea pigment theaflavin by peroxidase. Tetrahedron Lett 2015; 56(36): 5099-102.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.037]
[81]
Kusano R, Tanaka T, Matsuo Y, et al. Structures of epicatechin gallate trimer and tetramer produced by enzymatic oxidation. Chem Pharm Bull 2007; 55(12): 1768-72.
[http://dx.doi.org/10.1248/cpb.55.1768] [PMID: 18057757]
[82]
Lee LS, Kim YC, Park JD, et al. Changes in major polyphenolic compounds of tea (Camellia sinensis) leaves during the production of black tea. Food Sci Biotechnol 2016; 25(6): 1523-7.
[http://dx.doi.org/10.1007/s10068-016-0236-y] [PMID: 30263440]
[83]
Li N, Ma ZJ, Chu Y, et al. Phytochemical analysis of the triterpenoids with cytotoxicity and QR inducing properties from the total tea seed saponin of Camellia sinensis. Fitoterapia 2013; 84: 321-5.
[http://dx.doi.org/10.1016/j.fitote.2012.12.022] [PMID: 23266730]
[84]
Li W, Yang J, Zhu XS, et al. Correlation between tea consumption and prevalence of hypertension among Singaporean Chinese residents aged ⩾40 years. J Hum Hypertens 2016; 30(1): 11-7.
[http://dx.doi.org/10.1038/jhh.2015.45] [PMID: 26016594]
[85]
Li Z, Feng C, Luo X, et al. Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis. Food Microbiol 2018; 76: 405-15.
[http://dx.doi.org/10.1016/j.fm.2018.07.001] [PMID: 30166168]
[86]
Liu CY, Huang CJ, Huang LH, et al. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One 2014; 9(3)e91163
[http://dx.doi.org/10.1371/journal.pone.0091163] [PMID: 24614112]
[87]
Liu S, Huang H. Assessments of antioxidant effect of black tea extract and its rationals by erythrocyte haemolysis assay, plasma oxidation assay and cellular antioxidant activity (CAA) assay. J Funct Foods 2015; 18: 1095-105.
[http://dx.doi.org/10.1016/j.jff.2014.08.023]
[88]
Liu S, Sun Z, Chu P, et al. EGCG protects against homocysteine-induced human umbilical vein endothelial cells apoptosis by modulating mitochondrial-dependent apoptotic signaling and PI3K/Akt/eNOS signaling pathways. Apoptosis 2017; 22(5): 672-80.
[http://dx.doi.org/10.1007/s10495-017-1360-8] [PMID: 28317089]
[89]
Liu Z, Chen Z, Guo H, et al. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high-fat-induced obese mice. Food Funct 2016; 7(12): 4869-79.
[http://dx.doi.org/10.1039/C6FO01439A] [PMID: 27812583]
[90]
Lu X, Zhao Y, Sun Y, et al. Characterisation of polysaccharides from green tea of Huangshan Maofeng with antioxidant and hepatoprotective effects. Food Chem 2013; 141(4): 3415-23.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.058] [PMID: 23993501]
[91]
Ma C, Li J, Chen W, et al. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics. Food Res Int 2018; 108: 413-22.
[http://dx.doi.org/10.1016/j.foodres.2018.03.052] [PMID: 29735074]
[92]
Mao A, Su H, Fang SM, et al. Effects of roasting treatment on non‐volatile compounds and taste of green tea. Int J Food Sci Technol 2018; 53(11): 2586-94.
[http://dx.doi.org/10.1111/ijfs.13853]
[93]
Matsuo Y, Li Y, Watarumi S, et al. Production and degradation mechanism of theacitrin C, a black tea pigment derived from epigallocatechin‐3‐O‐gallate via a bicyclo [3.2.1] octane‐type intermediate. Tetrahedron 2011; 67(11): 2051-9.
[http://dx.doi.org/10.1016/j.tet.2011.01.058]
[94]
Meng Q, Li S, Huang J, et al. Importance of the nucleophilic property of tea polyphenols. J Agric Food Chem 2019; 67(19): 5379-83.
[http://dx.doi.org/10.1021/acs.jafc.8b05917] [PMID: 30406649]
[95]
Meng XH, Zhu HT, Yan H, et al. C-8 N-Ethyl-2-pyrrolidinone-substituted Flavan-3-ols from the leaves of Camellia sinensis var. pubilimba. J Agric Food Chem 2018; 66(27): 7150-5.
[http://dx.doi.org/10.1021/acs.jafc.8b02066] [PMID: 29889511]
[96]
Zhe G, Zhang X, Chen K, et al. Content variation of theanine and gallic acid in pu‐er tea. Yunnan Zhi Wu Yan Jiu 2005; 27(5): 572-6.
[http://dx.doi.org/10.1360/biodiv.050022]
[97]
Zhou H, Li HM, Du YM, et al. C-geranylated flavanones from YingDe black tea and their antioxidant and α-glucosidase inhibition activities. Food Chem 2017; 235: 227-33.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.034] [PMID: 28554631]
[98]
Zhou J, Wu Y, Long P, et al. LC‐MS‐based metabolomics reveals the chemical changes of polyphenols during high‐temperature roasting of large‐leaf yellow tea. J Agric Food Chem 2019; 67(19): 5405-12.
[http://dx.doi.org/10.1021/acs.jafc.8b05062] [PMID: 30485095]
[99]
Zhou ZH, Zhang YJ, Xu M, et al. Puerins A and B, two new 8-C substituted flavan-3-ols from Pu-er tea. J Agric Food Chem 2005; 53(22): 8614-7.
[http://dx.doi.org/10.1021/jf051390h] [PMID: 16248561]
[100]
Zhu J, Chen F, Wang L, et al. Comparison of aroma‐active volatiles in oolong tea infusions using GC-olfactometry, GC-FPD, and GC-MS. J Agric Food Chem 2015; 63(34): 7499-510.
[http://dx.doi.org/10.1021/acs.jafc.5b02358] [PMID: 26257073]
[101]
Zhu YF, Chen JJ, Ji XM, et al. Changes of major tea polyphenols and production of four new B-ring fission metabolites of catechins from post-fermented Jing-Wei Fu brick tea. Food Chem 2015; 170: 110-7.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.075] [PMID: 25306324]
[102]
Monobe M, Nomura S, Ema K, et al. Quercetin glycosides‐rich tea cultivars (Camellia sinensis L.) in Japan. Food Sci Technol Res 2015; 21(3): 333-40.
[http://dx.doi.org/10.3136/fstr.21.333]
[103]
Naveed M. BiBi J, Kamboh AA, et al. Pharmacological values and therapeutic properties of black tea (Camellia sinensis): a comprehensive overview. Biomed Pharmacother 2018; 100: 521-31.
[http://dx.doi.org/10.1016/j.biopha.2018.02.048] [PMID: 29482046]
[104]
Wei K, Wang LY, Zhou J, et al. Comparison of catechins and purine alkaloids in albino and normal green tea cultivars (Camellia sinensis L.) by HPLC. Food Chem 2012; 130(3): 720-4.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.092]
[105]
Wu LY, Juan CC, Hwang LS, et al. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur J Nutr 2004; 43(2): 116-24.
[http://dx.doi.org/10.1007/s00394-004-0450-x] [PMID: 15083319]
[106]
Xia EH, Zhang HB, Sheng J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 2017; 10(6): 866-77.
[http://dx.doi.org/10.1016/j.molp.2017.04.002] [PMID: 28473262]
[107]
Xiao J, Huo J, Jiang H, et al. Chemical compositions and bioactivities of crude polysaccharides from tea leaves beyond their useful date. Int J Biol Macromol 2011; 49(5): 1143-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.09.013] [PMID: 21946077]
[108]
Xu JZ, Leung LK, Huang Y, et al. Epimerisation of tea polyphenols in tea drinks. J Sci Food Agric 2010; 83(15): 1617-21.
[http://dx.doi.org/10.1002/jsfa.1597]
[109]
Xu J, Wang M, Zhao J, et al. Yellow tea (Camellia sinensis L.), a promising Chinese tea: Processing, chemical constituents and health benefits. Food Res Int 2018; 107: 567-77.
[http://dx.doi.org/10.1016/j.foodres.2018.01.063] [PMID: 29580521]
[110]
Xu P, Wu J, Zhang Y, et al. Physicochemical characterization of puerh tea polysaccharides and their antioxidant and α‐glycosidase inhibition. J Funct Foods 2014; 6: 545-54.
[http://dx.doi.org/10.1016/j.jff.2013.11.021]
[111]
Yamashita Y, Wang L, Wang L, et al. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct 2014; 5(10): 2420-9.
[http://dx.doi.org/10.1039/C4FO00095A] [PMID: 25098399]
[112]
Yang CS, Zhang J. Studies on the prevention of cancer and cardiometabolic diseases by tea: Issues on mechanisms, effective doses, and toxicities. J Agric Food Chem 2019; 67(19): 5446-56.
[http://dx.doi.org/10.1021/acs.jafc.8b05242] [PMID: 30541286]
[113]
Yang G, Shu XO, Li H, et al. Prospective cohort study of green tea consumption and colorectal cancer risk in women. Cancer Epidemiol Biomarkers Prev 2007; 16(6): 1219-23.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-0097] [PMID: 17548688]
[114]
Yang G, Zheng W, Xiang YB, et al. Green tea consumption and colorectal cancer risk: a report from the Shanghai Men’s Health Study. Carcinogenesis 2011; 32(11): 1684-8.
[http://dx.doi.org/10.1093/carcin/bgr186] [PMID: 21856996]
[115]
Yang J, Mao QX, Xu HX, et al. Tea consumption and risk of type 2 diabetes mellitus: a systematic review and meta-analysis update. BMJ Open 2014; 4(7)e005632
[http://dx.doi.org/10.1136/bmjopen-2014-005632] [PMID: 25052177]
[116]
Yang M, Wang C, Chen H. Green, oolong and black tea extracts modulate lipid metabolism in hyperlipidemia rats fed high-sucrose diet. J Nutr Biochem 2001; 12(1): 14-20.
[http://dx.doi.org/10.1016/S0955-2863(00)00140-6] [PMID: 11179857]
[117]
Yang XR, Ye CX, Xu JK, et al. Simultaneous analysis of purine alkaloids and catechins in Camellia sinensis, Camellia ptilophylla and Camellia assamica var. kucha by HPLC. Food Chem 2007; 100(3): 1132-6.
[http://dx.doi.org/10.1016/j.foodchem.2005.11.021]
[118]
Yassin GH, Koek JH, Jayaraman S, et al. Identification of novel homologous series of polyhydroxylated theasinensins and theanaphthoquinones in the SII fraction of black tea thearubigins using ESI/HPLC tandem mass spectrometry. J Agric Food Chem 2014; 62(40): 9848-59.
[http://dx.doi.org/10.1021/jf502220c] [PMID: 25263270]
[119]
Ye Y, Yan J, Cui J, et al. Dynamic changes in amino acids, catechins, caffeine and gallic acid in green tea during withering. J Food Compos Anal 2018; 66: 98-108.
[http://dx.doi.org/10.1016/j.jfca.2017.12.008]
[120]
Yi T, Zhu L, Peng WL, et al. Comparison of ten major constituents in seven types of processed tea using HPLC‐DAD‐MS followed by principal component and hierarchical cluster analysis. Lebensm Wiss Technol 2015; 62(1): 194-201.
[http://dx.doi.org/10.1016/j.lwt.2015.01.003]
[121]
Yin JY, Duan SY, Liu FC, et al. Blood pressure is associated with tea consumption: A cross‐sectional study in a rural, elderly population of Jiangsu China. J Nutr Health Aging 2017; 21(10): 1151-9.
[http://dx.doi.org/10.1007/s12603-016-0829-4] [PMID: 29188874]
[122]
Yoshikawa M, Morikawa T, Li N, et al. Bioactive saponins and glycosides. XXIII. Triterpene saponins with gastroprotective effect from the seeds of Camellia sinensis-theasaponins E3, E4, E5, E6, and E7. Chem Pharm Bull (Tokyo) 2005; 53(12): 1559-64.
[http://dx.doi.org/10.1248/cpb.53.1559] [PMID: 16327189]
[123]
Yoshikawa M, Morikawa T, Nakamura S, et al. Bioactive saponins and glycosides. XXV. Acylated oleanane-type triterpene saponins from the seeds of tea plant (Camellia sinensis). Chem Pharm Bull 2007; 55(1): 57-63.
[http://dx.doi.org/10.1248/cpb.55.57] [PMID: 17202702]
[124]
Yoshikawa M, Sugimoto S, Kato Y, et al. Acylated oleanane-type triterpene saponins with acceleration of gastrointestinal transit and inhibitory effect on pancreatic lipase from flower buds of chinese tea plant (Camellia sinensis). Chem Biodivers 2009; 6(6): 903-15.
[http://dx.doi.org/10.1002/cbdv.200800153] [PMID: 19551732]
[125]
Nagao T, Meguro S, Hase T, et al. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring) 2009; 17(2): 310-7.
[http://dx.doi.org/10.1038/oby.2008.505] [PMID: 19008868]