Nutritional and Bioactive Components of Carioca Common Bean (Phaseolus vulgaris L.) Tempeh and Yellow Soybean (Glycine max L.) Tempeh

Page: [768 - 775] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Tempeh, a product of Indonesian origin based on fermented soybeans, is present in naturalistic diets and has been gaining popularity in other cultures and diets due to the convenience for food preparation and use, aside from the nutritional and functional quality.

Methods: In this work, tempehs were produced from common bean, carioca grain type (CBT) aged and peeled, and in combination with yellow soybean (CBST: 50:50). Products were characterized based on nutritional quality (proximate composition, fiber, mineral, vitamin B12, energetic value), physical-chemical properties (pH, acidity, moisture, water activity), functional characteristics (antioxidant capacity), sensorial aspects (texture and color) and antinutrient content. Data from beanbased tempehs and the commercially purchased traditional soybean tempeh (ST) were statistically evaluated and the means compared by Tukey test.

Results: Although CBT was found nutritionally inferior to ST, its contribution on protein intake was noteworthy and, unlike ST, it presented high fiber content and low caloric value. P, K, Mg, Cu and Mo levels meet daily requirements for adults. CBT showed higher antioxidant capacity by DPPH method and was significantly more soft and elastic and less sticky and gummy when compared to ST, and L, a* and b* CBT color parameters were more pronounced than ST.

Conclusion: It can thus be concluded that tempeh based on carioca common beans can be an interesting alternative for stored grains, with good sensorial and functional properties and making an important nutritional contribution to the diet.

Keywords: Antioxidant capacity, Glycine max L., Phaseolus vulgaris L., proximate composition, Rhizopus oligosporus, sensory analysis.

Graphical Abstract

[1]
Marco ML, Heeney D, Binda S, et al. Health benefits of fermented foods: microbiota and beyond. Current O in Biotech 2017; (44): 94-102.
[http://dx.doi.org/10.1016/j.copbio.2016.11.010]
[2]
Jiménez-Martínez C, Hernandéz-Sánchez H, Dávila-Ortiz G. Diminution of quinolizidine alkaloids oligosaccharides and phenolic compounds from two species of Lupinus and soybean seeds by the effect of Rhizopus oligosporus. J Sci Food Agric 2007; 87(7): 1315-22.
[http://dx.doi.org/10.1002/jsfa.2851]
[3]
Krisnawati A, Adie MM. Selection of soybean genotypes by seed size and its prospects for industrial raw material in Indonesia. Procedia Food Sci 2015; 3: 355-63.
[http://dx.doi.org/10.1016/j.profoo.2015.01.039]
[4]
Soares LA, Bassinello PZ, Koakuzu SN, Eifert EC, Peloso MJD. Food fiber in common bean and cowpea beans. Campinas, SP: Instituto Agronômico de Campinas 2008. (in Portuguese)
[5]
Starzyńska-Janiszewska A, Stodolak B, Mickowska B. Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris) seeds. J Sci Food Agric 2014; 94(2): 359-66.
[http://dx.doi.org/10.1002/jsfa.6385] [PMID: 24037686]
[6]
AOAC International. Official methods of analysis of the Association Analytical Chemists. 19th ed. Gaithersburg, MD: AOAC International 2012.
[7]
Freitas SC, Silva TS, Carvalho PGB, et al. Standard operating procedure for determination of soluble and insoluble fibers. Rio de Janeiro: Embrapa Agroindústria de Alimentos 2008.
[8]
Hagerman AE, Butter LG. Protein precipitation method for the qualititative determination of tannins. J Agric Food Chem 1978; 26(4): 809-12.
[http://dx.doi.org/10.1021/jf60218a027]
[9]
Brand-Williams W, Cuvelier ME, Berser C. Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 1995; 28(1): 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[10]
Rufino MSM, Alves RE, Brito ES, et al. Scientific method: determination of the total antioxidant activity in fruits by the capture of free radical ABTS°. Fortaleza: Embrapa Agroindústria Tropical 2007.
[11]
Wolkers-Rooijackers JCM, Endika MF, Smid EJ. Enhancing vitamin B12 in lupin tempeh by in situ fortification. LWT 2018; (96): 513-8.
[12]
Reyes-Bastidas M, Reyes-Fernández EZ, López-Cervantes J, Milán-Carrillo J, Loarca-Piña GF, Reyes-Moreno C. Physicochemical, nutritional and antioxidant properties of tempeh flour from common bean ( Phaseolus vulgaris L.). Food Sci Technol Int 2010; 16(5): 427-34.
[http://dx.doi.org/10.1177/1082013210367559] [PMID: 21339161]
[13]
Damodaran S, Parkin KL. Fennema’s Food Chemistry. 5th ed. Boca Raton: CRC Press 2017; p. 1107.
[14]
Owens JD. Indigenous fermented foods of Southeast Asia. Boca Raton: CRC Press 2014; pp. 1-108.
[http://dx.doi.org/10.1201/b17835]
[15]
Toledo TCF, Canniatti-Brazaca SG. Chemical and nutritional evaluation of Carioca beans (Phaseolus vulgaris L.) cooked by different methods. Ciencia e Tecnol Alime 2008; 28(2): 355-60.
[http://dx.doi.org/10.1590/S0101-20612008000200013]
[16]
Gamboa-Gómez CI, Muñoz-Martínez A, Rocha-Guzmán NE, et al. Changes in phytochemical and antioxidant potential of Tempeh common bean flour from two selected cultivars influenced by temperature and fermentation time. J Food Process Preserv 2016; 40(2): 270-8.
[http://dx.doi.org/10.1111/jfpp.12604]
[17]
Astuti M, Meliala A, Dalais FS, Wahlqvist ML. Tempe, a nutritious and healthy food from Indonesia. Asia Pac J Clin Nutr 2000; 9(4): 322-5.
[http://dx.doi.org/10.1046/j.1440-6047.2000.00176.x]
[18]
Fabara CM, Proaño AG. Nutritional evaluation of Tempeh obtained by fermentation beam (Phaseolus vulgaris L) and Quinoa (Chenopodium quinoa) with Rhizopus oligosporus (PhD Thesis) Guaranda, Ecuador: Universidad Estatal de Bolivar. 2011.
[19]
Luzardo-Ocampo I, Campos-Vega R, Gaytán-Martínez M, Preciado-Ortiz R, Mendoza S, Loarca-Piña G. Bioaccessibility and antioxidant activity of free phenolic compounds and oligosaccharides from corn (Zea mays L.) and common bean (Phaseolus vulgaris L.) chips during in vitro gastrointestinal digestion and simulated colonic fermentation. Food Res Int 2017; 100(Pt 1): 304-11.
[http://dx.doi.org/10.1016/j.foodres.2017.07.018] [PMID: 28873692]
[20]
Brasil. Ministério da Saúde. Resolução da Diretoria Colegiada n. 269, de 22 de setembro de 2005. Diário Oficial (da) União da República Federativa do Brasil 2005b Available from:. http://portal.anvisa.gov.br/wps/wcm/connect/1884970047457811857dd53fbc4c6735/RDC_269_2005.pdf?MOD (cited: 3rd Jul 2017).
[21]
Food and Drug Administration (FDA); Food Labeling: revision of the nutrition and supplement facts labels: No. FDA-2012-N-1210. Federal Register 2006; 81(103): 33742-999.Available from:. https://www.gpo.gov/fdsys/pkg/FR-2016-05-27/pdf/2016-11867.pdf2018 (cited: 14 th May 2018).
[22]
Almeida MMB, Lopes MFG, Nogueira CMD, Magalhães CEC, Morais NMT. Determination of mineral nutrients in medicinal plants. Food Sci Technol (Campinas) 2002; 22(1): 94-7.
[http://dx.doi.org/10.1590/S0101-20612002000100017]
[23]
Herbert V. Vitamin B-12: plant sources, requirements, and assay. Am J Clin Nutr 1988; 48(3)(Suppl.): 852-8.
[http://dx.doi.org/10.1093/ajcn/48.3.852] [PMID: 3046314]
[24]
Nout MJR, Kiers JL. Tempeh fermentation, innovation and functionality: update into the third millennium. J Appl Microbiol 2005; 98(4): 789-805.
[25]
Vannucchi H, Monteiro TH. Fully recognized functions of cobalamin nutrients (Vitamin B12). São Paulo, SP: ILSI Brasil International Life Sciences Institute do Brasil 2010; Vol. 13. (in Portuguese)
[26]
Sachdev PS, Parslow RA, Lux O, et al. Relationship of homocysteine, folic acid and vitamin B12 with depression in a middle-aged community sample. Psychol Med 2005; 35(4): 529-38.
[http://dx.doi.org/10.1017/S0033291704003721] [PMID: 15856723]
[27]
Molina V, Médici M, Font De Valdez G, Taranto MP. Soybean-based functional food with vitamin B12-producing lactic acid bacteria. J Funct Foods 2012; 4(4): 831-6.
[http://dx.doi.org/10.1016/j.jff.2012.05.011]
[28]
Gröber U, Kisters K, Schmidt J. Neuroenhancement with vitamin B12-underestimated neurological significance. Nutrients 2013; 5(12): 5031-45.
[http://dx.doi.org/10.3390/nu5125031] [PMID: 24352086]
[29]
Jagasia D, Ferrando VZ. Tempeh: a tempting potential vitamin B12 treat: an exploration of legumes and vitamin B12 Bachelor Thesis. Uppsala: Institutionen för kostvetenskap. 2015.
[30]
Yadav BS, Yadav R, Yadav RB, Garg M. Antioxidant activity of various extracts of selected gourd vegetables. J Food Sci Technol 2016; 53(4): 1823-33.
[http://dx.doi.org/10.1007/s13197-015-1886-0] [PMID: 27413209]
[31]
Liang N, Kitts DD. Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules 2014; 19(11): 19180-208.
[http://dx.doi.org/10.3390/molecules191119180] [PMID: 25415479]
[32]
Xu BJ, Yuan SH, Chang SKC. Comparative studies on the antioxidant activities of nine common food legumes against copper induced human low-density lipoprotein oxidation in vitro. J Food Sci 2007; 72(7): S522-7.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00464.x] [PMID: 17995667]
[33]
Nurrahman M, Astuti S, Soesatyo MNHE. Role of black soybean tempe to increase activity antioxidante enzyme and lymphocyte resistance to hydrogen peroxide, in vivo. Proceedings of the Seminar Nasional Hasil Penelitian. Indonesia. 2012; pp. 1-13.
[34]
Shoemaker CF, Nantz J, Bonnans S, Noble AC. Rheological characterization of dairy products. Food Technol 2008; 46(1): 98-104.
[35]
Srapinkornburee W, Tassanaudom U, Nipornram S. Commercial development of red kidney bean Tempeh. As J Food Ag-Ind 2009; 2(3): 362-72.