Recent Patents on Nanotechnology publishes full-length/mini-reviews and research articles that reflect or deal with studies related to patents, the application of reported patents in a study, discussion of the comparison of results regarding the application of a given patent, and ...read more
eISBN: 978-981-5256-77-2
ISBN: 978-981-5256-78-9
Nanotechnology: A Quick Guide to Materials and Technologies invites readers to explore the cutting-edge world of nanotechnology, offering a comprehensive yet accessible introduction to this rapidly evolving field. The content provides a foundation for understanding the field and details the properties of significant nanomaterials. Readers will also gain insights into innovative processes while receiving a balanced perspective on the social and regulatory aspects of nanotechnology. Key Features: Foundational Knowledge: Begins with an overview of nanotechnology, its history, and its key concepts, Diverse Nanomaterials: Explores various types of nanomaterials, including nanoparticles, nanowires, and carbon-based materials like graphene, detailing their properties and potential applications. Advanced Applications: Explores the real-world uses of nanotechnology across multiple sectors, such as medicine, electronics, energy, and environmental science, demonstrating its transformative impact. Fabrication and Characterization: Covers techniques for creating and analyzing nanomaterials, offering insights into the processes that drive innovation in the field. Ethical and Societal Considerations: Discusses the broader implications of nanotechnology, including ethical, societal, and regulatory aspects Ideal for students, educators, researchers, and industry professionals, this guide serves as an informative resource for anyone looking to deepen their understanding of nanotechnology.
eISBN: 978-981-5238-84-6
ISBN: 978-981-5238-85-3
Recent Advancements in Multidimensional Applications of Nanotechnology provides a comprehensive overview of the latest advancements and applications of nanotechnology across various dimensions. Covering a wide range of topics, from electron microscopy to nanotherapeutic strategies, the book explores the diverse applications of nanotechnology in industries and research fields. Key Features: Comprehensive Coverage: Gain insights into electron microscopy, biogenic synthesis methods, energy applications, and more. Industry Applications: Discover how nanotechnology is revolutionizing industries such as energy, oil and gas, agriculture, and healthcare. Cutting-Edge Developments: Stay ahead of the curve with discussions on copper oxide nanoparticles, nano-coatings, and thin film optimization for solar cells. Biomedical Breakthroughs: Explore the exciting realm of biomedical applications, from metallic nanoparticles in healthcare to biogenic synthesis methods. Practical Insights: Benefit from practical insights and case studies that showcase real-world applications of nanotechnology.
eISBN: 978-981-5256-08-6
ISBN: 978-981-5256-09-3
Thin Film Nanomaterials: Synthesis, Properties and Innovative Energy Applications provides a comprehensive overview of the synthesis, properties, and cutting-edge applications of thin film nanomaterials. Each chapter explores different aspects of thin film synthesis and its application in energy devices, showcasing different metal-based and carbon nanomaterials . The book begins with a discussion on the synthesis and characterization of cadmium and zinc sulphide thin films for opto-electronics energy devices. Subsequent chapters delve into critical reviews of CIGS thin film nanomaterials, deposition techniques for metal oxide nanocomposite films, and nanostructured TiO2@carbon films for photocatalytic applications. Bandgap engineering, optical properties of composite films, and recent advancements in metal oxide thin films are also covered. Additionally, the synthesis and characteristics of iron oxide films for solar cell and green energy storage applications are discussed. Chapters on challenges and future prospects of CNT-based cathode emitters and advanced characterizations of nanocrystalline ferrimagnetic thin films provide valuable insights into emerging technologies. This book is an essential resource for professors, scientists, engineers, research scholars, postdocs, and undergraduate/graduate students seeking to explore the forefront of nanomaterials and their applications in energy systems.
eISBN: 978-981-5223-10-1
ISBN: 978-981-5223-11-8
The discovery of new materials and the manipulation of their exotic properties for device fabrication is crucial for advancing technology. Nanoscience, and the creation of nanomaterials have taken materials science and electronics to new heights for the benefit of mankind. Advanced Materials and Nanosystems: Theory and Experiment covers several topics of nanoscience research. The compiled chapters aim to update readers by highlighting modern developments in materials science theory and experiments. The significant role of new materials in future technology is also demonstrated. The book serves as a reference for curriculum development in technical institutions and research programs in the field of physics, chemistry and applied areas of science like materials science, chemical engineering and electronics. This part covers 11 topics in these areas: 1- Role of Plasmonic Metal-semiconductor Heterostructure in Photo Catalytic Hydrolysis and Degradation of Toxic Dyes 2 -BaZrO3-Based Ceramics and Ceramic Composites as Smart Materials for Advanced Applications 3 -A High-capacity Anode Material for Lithium-ion Batteries is Sili-graphene Type SiC3 4 -An Introduction to the Fabrication of White Light-emitting Diodes 5 -Electronic and Piezoelectric Properties of Nonmetal Doped II-VI Monolayer Compounds 6- A Theoretical Investigation on the New Quaternary MAX-phase Compounds 7- Surface Segregation in Pt 3 Nb and Pt 3 Ti using Density Functional-based Methods. 8- Nanoparticles and Environmental Health 9 -Investigation for Optimum site for adsorption and population effect of Lithium on Silicene Monolayer 10- Strategies for Synthesizing Metal Oxide Nanoparticles and the Challenges 11- Heterogeneous Semiconductor Photocatalysis for Water Purification: Basic Mechanism and Advanced Strategies
eISBN: 978-981-5238-24-2
ISBN: 978-981-5238-25-9
Nanoelectronic Devices and Applications presents reviews on recent advances in nanoelectronic device design and new directions for their practical use. The volume includes 16 edited chapters that cover novel material systems, band engineering, modelling and simulations, fabrication and characterization techniques, and their emerging applications. The discussions presented in this book are based on current understandings on innovations and future trends, and references are provided for advanced scholars. Chapter 1 presents an overview of recent innovations and future prospects in III-nitride semiconductor technologies for RF, power, digital and quantum applications. Chapter 2 reports new trends in GaN-based optical devices for sensing and micro-display applications. Chapter 3 shows current interests in nanophosphors and their utilizations in improving device performance of InGaN nanowire light-emitting diodes (LEDs). Recent studies on the effect of potential profile on the carrier transport in AlGaAs based double quantum well structures and their applications are presented in Chapter 4. The recent progress in high-electron-mobility transistors (HEMTs) is presented through Chapters 5, 6, and 7. A comprehensive review on β-Ga2O3 emphasizing material properties, growth approaches, and its applications for next-generation high-power nanoelectronics; the effect of dielectric layers on the characteristics of AlN/β-Ga2O3 HEMTs are presented in Chapter 8 and 9 respectively. Chapters 10-14 summarize the recent studies in field-effect transistors (FETs) adopting different materials and structures. Chapter 15 presents current research in 2D Tungsten Diselenide (WSe2) with special focus on the material properties, device structures, applications, and challenges. Finally, Chapter 16 presents a systematic review of memristors, and memristive semiconductor devices. The book is intended as a primary resource for elective subjects in advanced electronics and computer engineering courses at university level. Researchers and industry professionals will also learn about emerging trends and state-of-the-art research in nanoelectronics.
eISBN: 978-981-5165-64-7
ISBN: 978-981-5165-65-4
Nanoscale Field Effect Transistors: Emerging Applications is a comprehensive guide to understanding, simulating, and applying nanotechnology for design and development of specialized transistors. This book provides in-depth information on the modeling, simulation, characterization, and fabrication of semiconductor FET transistors. The book contents are structured into chapters that explain concepts with simple language and scientific references. The core of the book revolves around the fundamental physics that underlie the design of solid-state nanostructures and the optimization of these nanoscale devices for real-time applications. Readers will learn how to achieve superior performance in terms of reduced size and weight, enhanced subthreshold characteristics, improved switching efficiency, and minimal power consumption. Key Features: Quick summaries: Each chapter provides an introduction and summary to explain concepts in a concise manner. In-Depth Analysis: This book provides an extensive exploration of the theory and practice of nanoscale materials and devices, offering a detailed understanding of the technical aspects of Nano electronic FET transistors. Multidisciplinary Approach: It discusses various aspects of nanoscale materials and devices for applications such as quantum computation, biomedical applications, energy generation and storage, environmental protection, and more. It showcases how nanoscale FET devices are reshaping multiple industries. References: Chapters include references that encourage advanced readers to further explore key topics. Designed for a diverse audience, this book caters to students, academics and advanced readers interested in learning about Nano FET devices.
eISBN: 978-981-5179-36-1
ISBN: 978-981-5179-37-8
Nanoelectronics Devices: Design, Materials, and Applications provides information about the progress of nanomaterial and nanoelectronic devices and their applications in diverse fields (including semiconductor electronics, biomedical engineering, energy production and agriculture). The book is divided into two parts. The editors have included a blend of basic and advanced information with references to current research. The book is intended as an update for researchers and industry professionals in the field of electronics and nanotechnology. It can also serve as a reference book for students taking advanced courses in electronics and technology. The editors have included MCQs for evaluating the readers’ understanding of the topics covered in the book. Topics Covered in Part 2 include applications of nanoelectronics for different devices and materials. - Photonic crystal waveguide geometry - 8kW to 80kW power grids with simple energy storage systems - Two-dimensional material and based heterojunctions like MoS2 /graphene, MoS2 /CNT, and MoS2 /WS2, - 5G communication material - Wearable devices like electronic skin, intelligent wound bandages, tattoo-based electrochemical sensors - PEDOT: PSS-based EEG - New materials for medicine
eISBN: 978-981-5136-62-3
ISBN: 978-981-5136-63-0
Nanoelectronics Devices: Design, Materials, and Applications provides information about the progress of nanomaterial and nanoelectronic devices and their applications in diverse fields (including semiconductor electronics, biomedical engineering, energy production and agriculture). The book is divided into two parts. The editors have included a blend of basic and advanced information with references to current research. The book is intended as an update for researchers and industry professionals in the field of electronics and nanotechnology. It can also serve as a reference book for students taking advanced courses in electronics and technology. The editors have included MCQs for evaluating the readers’ understanding of the topics covered in the book. Topics covered in Part 1 include basic knowledge on nanoelectronics with examples of testing different device parameters. - The present, past, and future of nanoelectronics, - An introduction to Nanoelectronics and applicability of Moore's law - Transport of charge carrier, electrode, and measurement of device parameters - Fermi level adjustment in junction less transistor, - Non-polar devices and their simulation - The negative capacitance in MOSFET devices - Effect of electrode in the device operation - Second and Sixth group semiconductors, - FinFET principal and future, Electronics and optics integration for fast processing and data communication - Batteryless photo detectors - Solar cell fabrication and applications - Van der Waals assembled nanomaterials
eISBN: 978-981-5079-99-9
ISBN: 978-981-5080-00-1
Role of Nanotechnology in Cancer Therapy gives an overview of the innovative nanocarrier-based approaches for managing various cancers such as gastric, skin, lung, and prostate cancers. The book also explores the evolving targeting approaches specific to cancer and the immunotherapy-based nanomedicinal approach. Several drug-delivery systems which reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity are also discussed in this book. Key Features - Discusses the potential benefits and therapeutic applications of nanoparticles in cancer management - Provides information about therapy in a range of cancers - Discusses recent developments in cancer nanomedicine including targeted therapy, immonotherapy nanoparticles and dual drug delivery - Includes safety and toxicity considerations - Provides references for advanced readers This book will inform a broad range of readers including undergraduate and postgraduate students, oncologists, pharmacists, and researchers involved in nanomedicine and nano-drug delivery about current advancement in cancer nanomedicine.
eISBN: 978-981-5080-11-7
ISBN: 978-981-5080-12-4
Synthesis and Applications of Semiconductor Nanostructures consists of 15 chapters that focus on synthesis, characterization and multifaceted potential applications of semiconductor nanostructures, metal organic frameworks (MOFs) and nanostructure impregnated metal-organic frameworks (MOFs). Special materials included in the volume include doped glasses, functionalized carbon nanotubes, doped graphene and graphene nanoribbons. The contributions highlight numerous bottom-up and top-down techniques for the synthesis of semiconductor nanostructures. Several industrial processes such as hydrogen production, wastewater treatment, carbon dioxide reduction, pollution control and oxidation of alcohols have been demonstrated in the context of semiconductor nanomaterial applications. The volume also has chapters dedicated to updates on the biomedical applications of these nanomaterials. This volume is a timely resource for postgraduate students, academicians, researchers and technocrats, who are involved in R&D activities with semiconductor nanomaterials and metal organic frameworks.