Bipolar Transistor and MOSFET Device Models

Author(s): Kunihiro Suzuki

DOI: 10.2174/9781681082615116010013

Parasitic Limitations of MOSFETs: Gate Fringe Capacitance, Silicided Source/Drain Resistance, and Threshold Voltage Shift Due to Impurity Penetration through a Thin Gate Oxide

Pp: 547-582 (36)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Parasitic capacitance and resistance associated with source/drain silicide contacts are not scaled down, and they have a large influence on the device characteristics considering the scaling effect. The fringe capacitance and source/drain resistance are investigated in this chapter. Futher, the impact of B penetration through gate oxide on threshold voltage is analyzed. As the device is scaled down, the impurities in polycrystalline Si gate tend to penetrate the substrate through the thin gate oxide, and the influence of the penetrated impurity to the shift of threshold voltage becomes significant.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books