Effect of Static Electric Fields on The Electronic And Optical Properties of Layered Semiconductor Nanostructures

Author(s): Volodya Artavazd Harutyunyan

DOI: 10.2174/9781681080802115010006

Quasy-Two- and Quasy-One-Dimensional Excitons in Uniform Electric Field

Pp: 146-189 (44)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

The states of interacting electron-hole pair in semiconductor nanotube in the presence of strong lateral homogeneous electric field are considered theoretically. It is shown in single-particle approximation that along with the size-quantization of charge carriers` motion by the radial direction the external strong electric field leads to the additional (field) localization of particles also by the angular variable. At the same time the strong external field polarizes the electron–hole pair and traps them on the opposite ends of tube`s diameter. Consequently, the excitonic complex with transversal dimensions of the order of the system`s diameter is formed in a nanotube. By using the variation approach the binding energies and wave functions of the first two states of such field exciton-like complex (FELC) in the tube are calculated. The specificities of interacting electron-hole pair states in semiconductor quantum ring in the presence of strong lateral homogeneous electrostatic field are also considered. The influence of the longitudinal uniform electrostatic field on two- dimensional and one-dimensional excitonic states in the quantum film and quantum wire are considered, respectively. In the quasiclassical approximation the probabilities of ionization of two-dimensional and one-dimensional excitons under the influence of a longitudinal external electric field are calculated. The dependence of the ionization probability on the external field strength is obtained in the explicit analytical form. The results show that when the dimensionality of the system is reduced, the dependence of the exciton ionization probability on the value external field as compared to the three-dimensional case is weakened.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books