Convergence Theorems for Lattice Group-Valued Measures

Author(s): Antonio Boccuto and Xenofon Dimitriou

DOI: 10.2174/9781681080093115010006

Classical Limit Theorems in Lattice Groups

Pp: 263-358 (96)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

We consider several versions of limit theorems for lattice group-valued measures, in which both pointwise convergence of the involved measures and the notions of σ-additivity, (s)-boundedness, regularity, are given in the global sense, that is with respect to a common regulator. We present the construction of some kinds of integrals in the vector lattice context and some Vitali and Lebesgue theorems. Successively we prove some other kinds of limit theorems, in which the main properties of the measures are considered in the classical like sense. Finally, we give different types of decomposition theorems for lattice group-valued measures.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books