The Analysis of Regulatory DNA: Current Developments, Knowledge and Applications Uncovering Gene Regulation

Author(s): Nina M. Fischer and Oliver Kohlbacher

DOI: 10.2174/9781608054923113010013

Structural Insights Into Physical Interactions Of Transcription Factor-Dna Complexes At An Atomic Level

Pp: 189-207 (19)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Transcription factors are proteins that bind to short sequence motifs on DNA typically called cisregulatory elements. These cis-regulatory elements are characterized by their linear base pair sequence as well as specific features of their three-dimensional structure. These structural features play an important role in the recognition and binding of proteins to DNA.

Various computational approaches have been used to model protein-DNA interaction interfaces at an atomic level. We describe their most promising scope of applications and discuss their assets and drawbacks. Structure-based computational methods require three-dimensional protein-DNA complexes gained either by X-ray crystallography or by in silico modeling. Docking approaches, molecular dynamics, and Monte Carlo simulations are promising techniques to model transcription factor-DNA complexes in silico. Both experimentally determined and ab initio designed protein-DNA complexes can be analyzed by statistical methods. We describe the differences of several statistical potentials and how they were obtained. Position weight matrices obtained from structure-based approaches can then be used to scan efficiently and more accurately genome-wide for transcription factor binding sites.

In a case study on WRKY-DNA complexes we present a computational modeling technique for the ab initio design of a specific transcription factor-DNA complex. This procedure is generally applicable to similar problems. The resulting three-dimensional interaction interface provides the basis for studying specific side chain and base interactions. Moreover, the results give hints towards varying specificity and function of different representatives of the WRKY protein family. This study provides valuable insights into the interplay between transcription factors and DNA in three dimensions and opens up new perspectives for their design.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books