Frontiers in CNS Drug Discovery

Author(s): Elena González-Burgos and Maria P. Gómez-Serranillos

DOI: 10.2174/9781608057672113020010

Flavonoids – Their Preventer and Therapeutic Applications Against Parkinson’s Disease

Pp: 281-311 (31)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Parkinson´s disease (PD) is a major public health problem worldwide that affects millions of people, increasingly prevalent as the population ages. This disease, the most common human neurodegenerative motor disorder, is characterized by a progressive decrease in striatal dopamine content of dopaminergic neurons in the substantia nigra pars compacta. Converging pathogenic factors such as oxidative stress, inflammation, mitochondrial impairment and altered calcium homeostasis, among others, have been described as biochemical mechanisms of neurodegeneration in PD. Presently, quite a few natural flavonoids with potential antioxidants and signaling properties have been investigated and are still in progress to identify hopefully preventive neuroprotective compounds to forestall clinical progression of PD.

Flavonoids are the most abundant plant polyphenolic substances (over 4000 different ones) and they are found in main dietary sources (fruits, vegetables and plant-derived beverages). Chemically, this group of natural products shares a 2-phenylbenzopyran as basic structure (C6-C3-C6), and it is further subdivided into different classes (i.e. flavones, flavanones, flavonols anthocyanins, flavan-3-ols). Related to their structural characteristics, flavonoids can transfer a hydrogen atom to scavenge reactive oxygen species (ROS), chelate metal ions (i.e. iron, copper) and stabilize unpaired electrons by resonance. Structural differences found among individual types of flavonoids as well as glycosylation patterns determine the biological activities of these promising chemoprotective compounds. As neuroprotective agents, flavonoids have been reported to act as direct ROS scavengers, modulate the endogenous enzymatic and nonenzymatic antioxidant defense system and activate and regulate different pro-survival pathways.

This chapter, based on highlighted research articles, focuses on the multiple neuroprotection mechanisms of natural flavonoids in PD, covering the most recent preclinical in vitro and in vivo PD animal models’ studies and clinical trials and providing an overview and challenges that may be helpful for future research.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books