Abstract
SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.
Abstract
This chapter concerns real-times hexapod robot force control. Based on an operational trajectory planner, a computed torque control for each leg of hexapod robot is presented. This approach takes into account the force distribution on the robot legs in real time and the hexapod dynamic model. First, Kinematic and dynamic modeling are presented. Then, a methodology for the optimal force distribution is given. The issue of force distribution is expressed on the basis of nonlinear programming terms that take into consideration both the equality and the inequality of constraints. Subsequently, nonlinear inequalities of friction constraints can be replaced by a combination of linear equalities and inequalities [22]. The original constraining nonlinear programming problem is then transformed to a problem of a quadratic optimization. Therefore, the overall hexapod computed torque control is presented. Finally some simulations are also given in order to show the effectiveness of the proposed approach.
Recommended Chapters
We recommend

Authors:Bentham Science Books