The 2-Dimensional World of Graphene

Author(s): Ishani Mitra* and Tapan Ganguly

DOI: 10.2174/9789815238938124010003

Development of Light Energy Converters by using Short-Chain Dyad-Graphene Oxide and Graphene Quantum Dot Nanocomposites: A Comparative Approach

Pp: 1-19 (19)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

In this chapter, the measurements of fluorescence lifetimes of short-chain dyads ((E)-4-(((9H-fluorene-2-yl) Dimino)-methyl), N, N dimethyl-aniline (NND MBF)-graphene quantum dot (GQD) nanocomposite systems were made. The results observed from this system have been compared with the pristine dyad (p-dyad) and graphene oxide (GO)-dyad nanocomposite and Carbon Quantum Dot(CQD) nanocomposite. When compared to pristine dyad and dyad-GO systems, the dyad-GQD appears to be a much better light-energy converter because of its superior capacity for trans-conformer retention, which can occur even under a photoexcitation state. In the instance of the nanocomposite dyad NNDMBF-GQD, the surface trap effects may be the cause of the excited state's trans-conformer's relative stability when compared to its pristine form.

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books