Computational Modeling and Simulation in Biomedical Research

Author(s): Lilach Soreq and Wael Mohamed * .

DOI: 10.2174/9789815165463124010005

Computational Analysis of Biological Data: Where Are We?

Pp: 14-39 (26)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

 There has been a great development in the field of computational modeling and simulation in biomedical research during the last ten years, in particular, in brain stimulation of Parkinson’s disease (PD) patients and, recently, even in that of Alzheimer’s disease (AD) patients. Computer modeling allows such electrical stimulations using statistics, bioinformatics and advanced machine-learning algorithms. The current book chapter discusses the advantages of computational modeling in studying biomedical research. Using computational modeling, classification algorithms can be applied to microarray and RNA sequencing data (such as hierarchical clustering - HCL, t-SNE and principal component analysis - PCA), and high-resolution images can be generated based on the analyzed data and patient samples. Additionally, genomic data can be analyzed from cancer patient samples carrying mutations or exhibiting aneuploidy chromosomal changes (such as lung cancer, breast cancer, cervical cancer, ovarian cancer, glioblastoma and colon cancer). Also, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) can be analyzed. We can identify cellular vulnerabilities associated with aneuploid, and assigned aneuploidy scores can generate mushroom plots on the data. Functional network analyses can highlight altered pathways (such as inflammation and alternative splicing) in patient samples, and cellular composition and lineage-specific analyses can highlight the role of specific cell types (e.g., neurons, microglia – MG oligodendrocytes- OLGs, astrocytes, etc.). Computational platforms/tools, such as Matlab, R, Python, SPSS and MySQL, can be used for analysis. The data can be deposited in the Gene Expression Omnibus (GEO). CRISPR/Cas genomic targets can be identified for therapeutic intervention using computer simulations, and patient survival curves can be computed. Further comparison to mice models can be made. Additionally, human and mouse stem cells can be analyzed, and non-parametric gene ontology (GO) analyses using KolmogorovSmirnov (KS) statistical tests can be applied to microarray or RNA sequencing data.

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books