Manufacturing and Processing of Advanced Materials

Author(s): Bipul Kumar Singh*, Ankit Kumar Maurya, Sanjay Mishra and Anjani Kumar Singh * .

DOI: 10.2174/9789815136715123010014

Parametric Analysis and Modeling of die-sinking Electric Discharge Machining of Al6061/SiC Metal Matrix Composite Using Copper Electrode

Pp: 114-126 (13)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Aluminum-based metal matrix composites (MMC) are widely used in modern industries due to their lightweight, high strength, and superior hardness. In this study, silicon carbide (SiC) reinforced MMC has been fabricated using the stir casting method. Die-sinking EDM of fabricated MMC was performed using a copper (Cu) electrode. Experiments were carried out using the response surface methodology of box-behnken design (BBD) (RSM). The response surface plot was used to do parametric analysis on the effect of peak current (Ip ), gap voltage (Vg ), pulse-on-time (Ton), and duty factor(τ) on material removal rate (MRR) and surface roughness (Ra) using a second order regression model. The interaction effect of current with a pulse on time and duty factor has a substantial effect on MRR, while the interaction of current and voltage has a major impact on Ra, according to ANOVA. The increase of current increases both MRR and Ra. In the case of pulse-on-time, the value of Ra begins to decrease after 150 µs when the machining is performed at low voltage (40 V). 

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books