Advanced Mathematical Applications in Data Science

Author(s): Armel Djangone * .

DOI: 10.2174/9789815124842123010016

Data Science and Healthcare

Pp: 186-200 (15)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Data science is often used as an umbrella term to include various techniques for extracting insights and knowledge from complex structured and unstructured data. It often relies on a large amount of data (big data) and the application of different mathematical methods, including computer vision, NLP (or natural language processing), and data mining techniques. Advances in data science have resulted in a wider variety of algorithms, specialized for different applications and industries, such as healthcare, finance, marketing, supply chain, management, and general administration. Specifically, data science methods have shown promise in addressing key healthcare challenges and helping healthcare practitioners and leaders make data-driven decision-making. This chapter focuses on healthcare issues and how data science can help solve these issues. The chapter will survey different approaches to defining data science and why any organization should use data science. This chapter will also present different skills required for an effective healthcare data scientist and discusses healthcare leaders' behaviors that in impacting their organizational processes.

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books