Artificial Intelligence and Data Science in Recommendation System: Current Trends, Technologies and Applications

Author(s): Shilpa Verma*, Rajesh Bhatia and Sandeep Harit

DOI: 10.2174/9789815136746123010008

Developing a Content-based Recommender System for Author Specialization using Topic Modelling and Ranking Framework

Pp: 110-125 (16)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

In the era of information overloading, enormous scholarly data poses a challenge in identifying potential authors for productive outcomes. Researchers collaborate with fellow profiles to improve the eminence of Research and their academic profiles. This chapter proposes a content-based recommender system to generate author recommendations for collaborations that extracts the relevant keywords from the titles of research papers using MapReduce. To specify author specialization, the proposed technique comprises the feature extraction from the entire document using Latent Dirichlet Allocation (LDA), followed by an influence model which generates recommendations for the target authors. A ranking algorithm, such as TOPSIS is implemented to get Top-N recommendations based on multiple criteria. In this chapter, we investigated how the MapReduce framework is helpful in obtaining improved computational time for large-scale scholarly data and scalability. Experimental results on DBLP articles prove the relevance of ranking methods as an efficient and scalable platform for computing content-based recommendations

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books