Intelligent Technologies for Scientific Research and Engineering

Author(s): P. Ashok* and M. Ganesh Madhan

DOI: 10.2174/9789815079395123010006

Impact of Device Parameters on the Modulation Characteristics of Temperature Dependent Quantum Cascade Lasers

Pp: 29-44 (16)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

This study examines the effect of device parameters on the transient and steady-state dynamics. In addition, the device's analogue modulation properties are thoroughly examined. Under various cold finger temperature circumstances, the parameters terminal voltage (V), spontaneous emission factor (SEF), number of stages (M), and mirror reflectivity (R) are modified to see how they affect device properties. To analyze modulation properties, such as bandwidth, maximum modulation depth and corresponding frequency, the device is operated by the haversine input current. According to the findings, the lasing activity is delayed when the cold finger temperature rises, thereby increasing the threshold current regardless of device parameter modification. When T=45K and 0.65A current are used, a maximum Modulation Depth (MD) of 18% is produced. The greatest bandwidth of 27GHz is obtained when the injected current is 1.05A at T=15K. The minimal frequency required to obtain maximal MD rises as current and cold finger temperatures rise.

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books