Futuristic Projects in Energy and Automation Sectors: A Brief Review of New Technologies Driving Sustainable Development

Author(s): Dhanesh Tolia, Sayaboina Jagadeeshwar, Jayendra Kumar*, Pratul Arvind and Arvind R. Yadav

DOI: 10.2174/9789815080537123010017

Image Processing on Resource-Constrained Devices

Pp: 273-292 (20)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

The chapter portrays a new development in the field of embedded systems. It showcases the combination of Machine Learning algorithms and low-memory microcontrollers (ESP32-CAM). The uniqueness of this idea lies in the fact that Machine Learning is generally perceived as a processor-intensive task that requires high memory and storage. However, as seen in this chapter, one may soon realize how wrong this notion is with emerging technologies that are taking over the globe. This project portrays the successful implementation of a binary colour classification model on the ESP32-CAM with 68% accuracy post-training result with a mere 15 images of each colour. Machine learning has increased over the years. Some applications include image classification, object detection, and question-answering. This work merely puts out awareness in this domain and is hopeful that dedicated efforts towards it can solve many industrial problems. 

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books