Multimodal Affective Computing: Affective Information Representation, Modelling, and Analysis

Author(s): Gyanendra K. Verma * .

DOI: 10.2174/9789815124453123010009

Multimodal Fusion Framework and Multiresolution Analysis

Pp: 59-74 (16)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

This chapter presents a multi-modal fusion framework for emotion recognition using multiresolution analysis. The proposed framework consists of three significant steps: (1) feature extraction and selection, (2) feature level fusion, and (3) mapping of emotions in three-dimensional VAD space. The proposed framework considers subject-independent features that can incorporate many more emotions. It is possible to handle many channel features, especially synchronous EEG channels and feature-level fusion works. This framework of representing emotions in 3D space can be extended for mapping emotion in three-dimensional spaces with three specific coordinates for a particular emotion. In addition to the fusion framework, we have explained multiresolution approaches, such as wavelet and curvelet transform, to classify and predict emotions.

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books