Advances in Manufacturing Technologies and Production Engineering

Author(s): Adefemi O. Adeodu*, Ilesanmi A. Daniyan, George C. Ogwara and Monisola S. Adewale

DOI: 10.2174/9789815039771122010008

Development and Characterization of Tigernut Fibres Mixed with Nanoclay/epoxy Polymer Composites

Pp: 22-44 (23)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Natural fibres have gained huge attention from researchers in the field of
composite manufacturing in automotive applications due to their low cost,
biodegradability, availability, and high performance. However, due to their high
hydroxyl content of cellulose, natural fibres are susceptible to water absorption, which
invariably affects the mechanical properties of the composite adversely. Researchers
have proven that nanomaterials such as Nano silica Carbide (n-Sic) or nanoclay mixed
with the polymer composites can overcome the problem. This study investigates the
mechanical and microstructural properties of tiger nut fibres reinforced polymer
composites tailored to the automotive application. Tiger nut fibres mixed with nanoclay
to the size of 50≤μm were used to reinforce epoxy in three levels of loading 2, 4, 6%
respectively. Mechanical and microstructural properties of the composites produced
were examined. The results showed an increasing trend of 84, 99, 102 MPa and 110,
125, 138 MPa for tiger nut-epoxy and tiger nut-nanoclay epoxy composites,
respectively, in the tensile strength. Also, an increasing trend of 80, 84, 88 BHV and
87, 94, 98 BHV were observed for tiger nut-epoxy and tiger nut-nanoclay epoxy
composites, respectively, for hardness. Water absorption capacity decreases as the
percentage weight fractions of the reinforcement increases but increases as the duration
of immersion in boiling water increases. The microstructures showed good interfacial
adhesion between reinforcement and polymer matrix when mixed with nanoclay. Tiger
nut fibres show a sustainable material useful for automotive applications.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books