Computational Intelligence For Data Analysis

Author(s): Irina V. Pustokhina, Denis A. Pustokhin, M. Ilayaraja and K. Shankar * .

DOI: 10.2174/9781681089430121010006

An Intelligent Transportation System for Traffic Density Estimation and Prediction Using Deep Learning Models

Pp: 49-62 (14)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Traffic congestion is a crucial issue that raises the uncertainty level of the traveling duration resulting in high stress and unsafe traffic scenarios. Effective traffic estimation and forecasting via Intelligent Transportation Systems (ITS) applications are beneficial in a variety of applications. The process of accurately and rapidly predicting the traffic condition helps the travelers to determine the traveling path and make decisions wisely. This paper develops a new deep learning (DL) based traffic density estimation and prediction model for ITS. The proposed model involves a set of two DL models, namely convolutional neural network (CNN) and long short term memory (LSTM) for traffic density estimation and prediction. These models are applied, and the results are analyzed under diverse situations. The experimental outcome indicated that the LSTM model is superior to CNN on both estimation and prediction processes.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books