Amelogenins: Multifaceted Proteins for Dental and Bone Formation and Repair

Author(s): Wu Li, Jean Yves-Sire, Yoshiro Takano, Mary MacDougall, Michel Goldberg, Pamela DenBesten

DOI: 10.2174/978160805171711001010163

Amelogenin Exons 8 and 9

Pp: 163-173 (11)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Exons 8 and 9 are two novel exons found in several transcripts of rodent amelogenin gene. These transcripts result from alternative splicing, in which exon 7 is replaced by exons 8 and 9, and they add a unique 3' terminus to amelogenin isoforms. Therefore, the alternatively spliced amelogenins end either at exon 7, encoding a single aspartic acid, or at exons 8 and 9, coding for 14 amino acids. So far, a total of seven alternatively spliced amelogenin mRNAs ending at exons 8 and 9 have been identified in rodents. The formation of these two exons results from a duplication of a DNA region containing exon 5, followed by its translocation dowstream exon 7. This event occurred during evolution of the rodent lineage at a period that postdates the divergence of the squirrel lineage, around 50 millions years ago. Therefore, exon 8 is homolog to exon 5. The amelogenins carrying the region encoded by exons 8 and 9 locate not only in ameloblasts and the enamel matrix but also in odontoblasts and dentin. The replacement of exon 7 by exons 8 and 9 leads to an additional hydrophilic domain, the function of which is not known, but may in part be related to the uniquely different rod and interrod structure seen in rodent enamel as compared to human enamel. The function of the amelogenins with exons 8 and 9 terminal peptides has been preliminarily investigated. They were found to enhance the proliferation of mesenchymal cells.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books