Structural Failure Analysis and Prediction Methods for Aerospace Vehicles and Structures

Author(s): W. Zhuang and L. Molent

DOI: 10.2174/978160805024611001010085

Fatigue Crack Growth Analysis for Notched Specimens under Flight Spectrum Loading

Pp: 85-95 (11)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

In aerospace vehicle design, structures always contain a range of geometric variations including various notches, holes and cutouts to achieve certain mechanical functions as well as weight savings. Those notches and holes can cause local stress concentrations and/or create hot spots for fatigue crack initiation and propagation. This chapter presents an analytical study of fatigue crack growth in aluminium alloy 7050-T7451 notched specimens under a fighter aircraft wing root bending moment spectrum. The crack growth data were measured by quantitative fractography for three groups of specimens with different stress concentration geometrical features. Under spectrum loading and for each spectrum peak stress level, a minimum of five specimens were tested. Based on the analysis of the measured spectrum crack growth data using linear elastic fracture mechanics, it was found that the concept of geometry factors formulated in the stress intensity factor could not collapse the crack growth rate data derived from each stress concentration feature, particularly near the small crack growth region. In order to investigate the possible reasons for this, three-dimensional elastic-plastic finite element analysis was used to determine notch plastic zone sizes for each stress concentration geometry. As a consequence, an alternative crack growth driving force which considered both notch elastic-plastic stress field and gross net-section stress field was used to interpret the fatigue crack growth data under spectrum loading. It was found that the predictions of crack growth under spectrum loading for different stress concentration factors at different peak load levels agreed reasonably well with the experimental results.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books