Multi-Objective Optimization In Theory and Practice II: Metaheuristic Algorithms

Author(s): Andre A. Keller

DOI: 10.2174/9781681087054119010004

Metaheuristic Optimization Algorithms

Pp: 54-83 (30)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Heuristic and metaheuristic algorithms are used iteratively to approximate challenging optimization problem-solving. A metaheuristic algorithm refers to a higher level master strategy which guides and controls the operations of other lower-level subordinate heuristic algorithms. Different concepts and operators are combined for exploring the search space of an optimization problem. The capacity of such techniques to solve NP-hard combinatorial problems and continuous optimization is well known. An illustrative and reference metaheuristic is given by the simulated annealing (SA) algorithm for solving optimization problems. SA is not an evolutionary algorithm since new solutions are mainly generated by using a sequence of random walks. We introduce both SA metaheuristic techniques for single-objective (SA) and multiobjective (MOSA) optimization problems. This study solves numerical test problems, such as the Ursem’s test function, the six-hump camel back test function, and ZDT1 to ZDT3 test problems. Routines from different software packages are used such as Mathematica® and other free open software packages. The applications show the capacity to approximate various Pareto-optimal fronts which shape can be convex or non-convex.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books