Multi-Objective Optimization in Theory and Practice I: Classical Methods

Author(s): Andre A. Keller

DOI: 10.2174/9781681085685117010010

Fuzzy Logic Programming

Pp: 204-237 (34)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Besides the usual “true” and “false” statements, there is also a place for “vague” or "fuzzy” statements in the real-world of decision-making problems. The linguistic statements may also be “possible,” “almost sure,” “hardly fulfilled,” “approximately equal to,” “considerable larger to,” etc. The essential elements of fuzzy logic consist of the following main elements. The single-objective fuzzy logic programming is presented first. Next, we show its natural extension to multi-objective optimization problems. The symmetric method for SOO fuzzy problems consists of different steps which include the determination of the membership functions, the fuzzy feasible set, and the fuzzy set of the optimal value. The problem is solved by using a maximin operator. The extension to multiple objectives is based on similar principles. Membership functions are associated with objectives and constraints. A fuzzy decision set can result from the Bellman-Zadeh principle that forms an appropriate aggregation approach. Different fuzzy decision sets can be considered, depending on the chosen rule (i.e., the intersection rule, the convex rule, and the product rule). Using the Belman-Zadeh criterion, the problem maximises a satisfaction level subject to -inequality constraints for objectives and the inequality constraints of the problem. An example illustrates the full process for finding - parametrized solutions.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books