Advances in Time Series Forecasting

Author(s): Eren Bas and Erol Egrioglu

DOI: 10.2174/9781681085289117020004

A New Fuzzy Time Series Forecasting Model with Neural Network Structure

Pp: 24-36 (13)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

Non-probabilistic forecasting methods are one of the most popular forecasting methods in recent years. Fuzzy time series methods are non-probabilistic and non-linear methods. Although these methods have superior forecasting performance, linear autoregressive models have better forecasting performance than fuzzy time series methods for some real-life time series. In this paper, a new hybrid forecasting method that contains stochastic approach based on an autoregressive model and fuzzy time series forecasting model was proposed in a network structure. Fuzzy c means method is used in fuzzification stage of the proposed method and also the proposed method is trained by using particle swarm optimization. The proposed method is applied to a well-known real-life time series data and it is proved that the proposed method has best forecasting performance when compared with some other studies suggested in the literature.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books