A Journey Through Water: A Scientific Exploration of The Most Anomalous Liquid on Earth

Author(s): Jestin Baby Mandumpal

DOI: 10.2174/9781681084237117010008

Supercooled & Glassy Water

Pp: 126-153 (28)

Buy Chapters

* (Excluding Mailing and Handling)

  • * (Excluding Mailing and Handling)

Abstract

SHS investigation development is considered from the geographical and historical viewpoint. 3 stages are described. Within Stage 1 the work was carried out in the Department of the Institute of Chemical Physics in Chernogolovka where the scientific discovery had been made. At Stage 2 the interest to SHS arose in different cities and towns of the former USSR. Within Stage 3 SHS entered the international scene. Now SHS processes and products are being studied in more than 50 countries.

Abstract

The roles of two low temperature and non−crystalline forms of water, (supercooled and glassy water) are very pivotal in supporting the existence of several microorganisms below 0°C, although they are very metastable with respect to the stable crystalline form of water, ice. In the supercooled regime, the hydrogen bond lifetime of a single hydrogen bond and water clusters are found to be significantly higher than in higher temperatures. Diffusion coefficient and configurational entropy show a distinct maximum at density 1.15g/cm3. Two inter−convertible forms of supercooled water, known as Low Density Liquid (LDL) and High Density Liquid (HDL), are found to coexist at temperatures below the freezing point of water. If water is cooled at very fast rate, it becomes glassy, the most profound form of water in the universe, bypassing the formation of ice. Polyamorphism is one of the characteristics observed in glassy water. Glass transition temperature in water has sparked debate in the scientific community. Different experimental procedures as well as water models produced varying values for the glass transition temperatures in water. It has been experimentally monitored and computationally simulated the transition between the two glassy phases of water, HDA and LDA. The transition is terminated at a critical point, according to Liquid−Liquid Critical Point (LLCP) theory. The concept of strong and fragile glasses is very powerful tool in furthering our understanding of the dynamics of glassy materials. It is interesting to note that a transition from strong to fragile occurs in water.

Recommended Chapters

We recommend

Favorable 70-S: Investigation Branching Arrow

Authors:Bentham Science Books