Insights into Biophysical Methods to Study Interactions Between HIV-1 Reverse Transcriptase and Non-nucleoside Reverse Transcriptase Inhibitors

Page: [818 - 825] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Reverse Transcriptase (RT) of immunodeficiency virus type-1 (HIV-1) remains an essential target for new antiretroviral therapies. Non-nucleoside reverse transcriptase inhibitors (or NNRTIs) constitute a major class of RT inhibitors whose characterization is essential.

Introduction: Several biochemical, biological, and biophysical methods have been previously used to analyze the biological effects of NNRTIs. We explored here the use of surface plasmonic resonance to characterize the affinity of RT towards selected NNRTIs and compared the results with those obtained with in vitro and in cellulo assays.

Methods: The solubility and stability in buffers of the tested NNRTIs were assessed by spectrophotometry and fluorescence. Surface plasmonic resonance experiments to study direct NNRTIs binding to immobilized RT and intramolecular quenching of RT tryptophan fluorescence were used to determine the KA association constants (= 1/KD) between RT and the inhibitors. The in vitro inhibition constants of RT were determined using kinetics and the effects on three other potential targets (proteasome, HIV-1 integrase, and HIV-1 protease) were analyzed.

Results: The results obtained with two typical molecules belonging to our previous N-hydroxyureido acylnucleoside derivatives series using the above biophysical assays matched those obtained in in vitro and previous in cellulo assays.

Conclusion: Surface plasmonic resonance provides reliable thermodynamic information on the interaction of RT with NNRTIs and appears as a useful method for understanding their inhibitory mechanism.

Keywords: HIV-1 reverse transcriptase, non-nucleoside reverse transcriptase inhibitors (NNRTIs), surface plasmonic resonance, flourescence, N-hydroxyureido acylnucleoside derivatives, double-stranded, DNA (dsDNA).

Graphical Abstract

[1]
Barré-Sinoussi F, Ross AL, Delfraissy JF. Past, present and future: 30 years of HIV research. Nat Rev Microbiol 2013; 11(12): 877-83.
[http://dx.doi.org/10.1038/nrmicro3132] [PMID: 24162027]
[2]
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV drug discovery and development: current innovations and future trends. J Med Chem 2016; 59(7): 2849-2878.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00497] [PMID: 26509831]
[3]
John-Stewart G. eHealth and Prevention of Mother-to-Child Transmission of HIV. Curr HIV/AIDS Rep 2018; 15(4): 350-357.
[http://dx.doi.org/10.1007/s11904-018-0408-x] [PMID: 29931467]
[4]
Balzarini J, Pérez-Pérez MJ, San-Félix A, et al. Camarasa, M.J.; Bathurst, I.C.; Barr, P.J.; De Clercq, E Kinetics of inhibition of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase by the novel HIV-1-specific nucleoside analogue [2′,5′-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3′-spiro-5 "- (4"-amino-1",2"-oxathiole-2",2"-dioxide)thymine (TSAO-T). J Biol Chem 1992; 267(17): 11831-8.
[PMID: 1376314]
[5]
De Clercq E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). Adv Pharmacol 2013; 67: 317-58.
[http://dx.doi.org/10.1016/B978-0-12-405880-4.00009-3] [PMID: 23886005]
[6]
de Béthune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009). Antiviral Res 2010; 85(1): 75-90.
[http://dx.doi.org/10.1016/j.antiviral.2009.09.008] [PMID: 19781578]
[7]
Wang J, Smerdon SJ, Jäger J, et al. Kohlstaedt, L.A.; Rice, P.A.; Friedman, J.M.; Steitz, T.A Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. Proc Natl Acad Sci USA 1994; 91(15): 7242-6.
[http://dx.doi.org/10.1073/pnas.91.15.7242] [PMID: 7518928]
[8]
Morris MC, Robert-Hebmann V, Chaloin L, et al. Mery, J.; Heitz, F.; Devaux, C.; Goody, R.S.; Divita, G A new potent HIV-1 reverse transcriptase inhibitor. A synthetic peptide derived from the interface subunit domains. J Biol Chem 1999; 274(35): 24941-6.
[http://dx.doi.org/10.1074/jbc.274.35.24941] [PMID: 10455170]
[9]
Valuev-Elliston VT, Kochetkov SN. Novel HIV-1 non nucleoside transcriptase inhibitors.: a combinational approach. Biochemistry (Mosc) 2017; 82(13): 1716-43.
[http://dx.doi.org/10.1134/S0006297917130107] [PMID: 29523068]
[10]
Gulick RM. Investigational Antiretroviral Drugs: What is Coming Down the Pipeline. Top Antivir Med 2018; 25(4): 127-132.
[11]
Tronchet JM, Apparu-Turquois C, Laroze N, Seman M. [Selectivity of the reverse transcriptase inhibitors toward types 1 and 2 of human immunodeficiency virus (HIV)]. Ann Pharm Fr 2002; 60(4): 227-231.
[PMID: 12378149]
[12]
Bannwarth L, Rose T, Dufau L, et al. Vanderesse, R.; Dumond, J.; Jamart-Grégoire, B.; Pannecouque, C.; De Clercq, E.; Reboud- Ravaux, M. Dimer disruption and monomer sequestration by alkyl tripeptides are successful strategies for inhibiting wild-type and multidrug-resistant mutated HIV-1 proteases. Biochemistry 2009; 48(2): 379-87.
[http://dx.doi.org/10.1021/bi801422u] [PMID: 19105629]
[13]
Deprez E, Barbe S, Kolaski M, et al. Leh, H.; Zouhiri, F.; Auclair, C.; Brochon, J.C.; Le Bret, M.; Mouscadet, J.F. Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Mol Pharmacol 2004; 65(1): 85-98.
[http://dx.doi.org/10.1124/mol.65.1.85] [PMID: 14722240]
[14]
Basse N, Papapostolou D, Pagano M, et al. Development of lipopeptides for inhibiting 20S proteasomes. Bioorg Med Chem Lett 2006; 16(12): 3277-81.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.033] [PMID: 16630721]
[15]
Rich RL, Day YS, Morton TA, Myszka DG. High-resolution and high-throughput protocols for measuring drug/human serum albumin interactions using BIACORE. Anal Biochem 2001; 296(2): 197-207.
[http://dx.doi.org/10.1006/abio.2001.5314] [PMID: 11554715]
[16]
Nordin H, Jungnelius M, Karlsson R, Karlsson OP. Kinetic studies of small molecule interactions with protein kinases using biosensor technology. Anal Biochem 2005; 340(2): 359-68.
[http://dx.doi.org/10.1016/j.ab.2005.02.027] [PMID: 15840510]
[17]
Dumond J, Boggetto N, Schramm HJ, Schramm W, Takahashi M, Reboud-Ravaux M. Thyroxine-derivatives of lipopeptides: bifunctional dimerization inhibitors of human immunodeficiency virus-1 protease. Biochem Pharmacol 2003; 65(7): 1097-102.
[http://dx.doi.org/10.1016/S0006-2952(02)01622-2] [PMID: 12663045]
[18]
Mao C, Sudbeck EA, Venkatachalam TK, Uckun FM. Structure-based design of non-nucleoside reverse transcriptase inhibitors of drug-resistant human immunodeficiency virus. Antivir Chem Chemother 1999; 10(5): 233-40.
[http://dx.doi.org/10.1177/095632029901000502] [PMID: 10574178]
[19]
Uckun FM, Pendergrass S, Maher D, Zhu D, Tuel-Ahlgren L, Mao CN. ′ Venkatachalam, T.K. -[2-(2-thiophene)ethyl]-N′-2-(5-bromopyridyl)] thiourea as a potent NNI-resistant and multtidrug-resistant immunodeficiency virus-1. Bioorg Med Chem Lett 1999; 9(24): 3411-6.
[http://dx.doi.org/10.1016/S0960-894X(99)00624-1] [PMID: 10617082]
[20]
De Clercq E. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Res 1998; 38(3): 153-79.
[http://dx.doi.org/10.1016/S0166-3542(98)00025-4] [PMID: 9754886]
[21]
Stevens M, Pannecouque C, De Clercq E, Balzarini J. Novel human immunodeficiency virus (HIV) inhibitors that have a dual mode of anti-HIV action. Antimicrob Agents Chemother 2003; 47(10): 3109-16.
[http://dx.doi.org/10.1128/AAC.47.10.3109-3116.2003] [PMID: 14506017]
[22]
Buckheit RW, Watson K, Fliakas-Bolltz V, Russel J. SJ-3366, a unique and highly potent nonnucleoside reverse transcriptase inhibitor of HIV-1 that also inhibits HIV-2. Antimicrob Agents Chemother 2001; 45(2): 393-400.
[http://dx.doi.org/10.1128/AAC.45.2.393-400.2001] [PMID: 11158731]
[23]
Brigati C, Giacca M, Noonan DM, Albini A. HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett 2003; 220(1): 57-65.
[http://dx.doi.org/10.1016/S0378-1097(03)00067-3] [PMID: 12644228]
[24]
Shojania S, O’Neil JD. Intrinsic disorder and function of the HIV-1 Tat protein. Protein Pept. Lett, 2010; 17(9): 999-1011. Intrinsic disorder and function of the HIV-1 Tat protein.
[http://dx.doi.org/10.2174/092986610791498993]
[25]
Ali A, Banerjea AC. Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci. Rep, 2016, 6, 27539. Curcumin inhibits HIV-1 by promoting Tat protein degradation
[http://dx.doi.org/10.1038/srep27539]
[26]
Li G, De Clercq E. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research Microbiol. Mol. Biol. Rev 2016; 80(3): 679-731. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research
[27]
Hooker CW, Lott WB, Harrich D. Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol 2001; 75(7): 3095-104.
[http://dx.doi.org/10.1128/JVI.75.7.3095-3104.2001] [PMID: 11238836]
[28]
Wear MA, Patterson A, Malone K, Dunsmore C, Turner NJ, Walkinshaw MD. A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A. Anal Biochem 2005; 345(2): 214-26.
[http://dx.doi.org/10.1016/j.ab.2005.06.037] [PMID: 16102717]
[29]
Jung S. Ok.; Ro,H.-U.; Kho, B.H.; Shin, Y.-B.; Kim, G.K.; Chung, B.H. Surface Plasmon resonance imaging-based protein-protein arrays for high-throughput screening of protein-protein interaction inhibitors. Proteomics 2005; 5: 4427-31.
[http://dx.doi.org/10.1002/pmic.200500001] [PMID: 16196090]
[30]
Wear MA, Nowicki MW, Blackburn EA, McNae IW, Walkinshaw MD. Thermo-kinetic analysis space expansion for cyclophilin-ligand interactions - identification of a new nonpeptide inhibitor using Biacore™ T200. FEBS Open Bio 2017; 7(4): 533-49.
[http://dx.doi.org/10.1002/2211-5463.12201] [PMID: 28396838]