[5]
Atkins, P.W. Quanta - A Handbook of Concepts; Oxford University Press: Oxford, 1991.
[7]
Klein, D. J. Mathematical Chemistry! Is it? And if so. What is it? Hyle-Int.Journ. Philosophy of Chemistry, 2014, 19, 55-85.
[14]
Mathematics in Chemistry Meeting. Lipsia, Restrepo, G., Ed.;
2016. MATCH Commun.Math.Comput.Chem , 2018; 80, . (3)
[26]
Roy, B.; Vanderpooten, D. The European School of MCDA: Emergence, Basic Features and Current Works. J.Multi-Crit. Decis. Anal., 1996, 5, 22-38.
[30]
Cronin, M.T.; Livingstone, D.J., Eds.; Predicting chemical toxicity and fate; CRC press, 2004.
[35]
Mezey, P.G. Shape in Chemistry An Introduction to Molecular Shape and Topology; Verlag Chemie: Weinheim, 1993.
[36]
Mezey, P.G.; Zimpel, Z.; Warburton, P.; Walker, P.D.; Irvine, D.G.; Huang, X-D.; Dixon, D.G.; Greenberg, B.M. Use of Quantitative Shape-Activity Relationships to Model the Photoinduced Toxicity of Polycyclic Aromatic Hydrocarbons: Electron Densitiy Shape Features Accurately Predict Toxicity. Environ. Toxicol. Chem., 1998, 17, 1207-1215.
[45]
Brüggemann, R.; Patil, G.P. Ranking and Prioritization for Multi-indicator Systems - Introduction to Partial Order Applications; Springer: New York, 2011.
[46]
Hasse, H. Vorlesungen über Klassenkörpertheorie; Physica-Verlag: Marburg, 1967.
[48]
Van de Walle, B.; De Baets, B.; Kerre, E. Characterizable fuzzy preference structures. Ann. Oper. Res., 1998, 80, 105-136.
[49]
Bruggemann, R.; Carlsen, L. An attempt to Understand Noisy Posets. MATCH Commun.Math.Comput.Chem., 2016, 75, 485-510.
[50]
Bruggemann, R.; Kerber, A.; Restrepo, G. Ranking Objects Using Fuzzy Orders, with an Application to Refrigerants. MATCH Commun.Math.Comput.Chem., 2011, 66, 581-603.
[51]
Wieland, R.; Bruggemann, R. Hasse Diagram Technique and Monte Carlo Simulations, MATCH Commun. Math.Comput.Chem., 2013, 70, 45-49.
[52]
Bruggemann, R.; Kerber, A. Fuzzy Logic and Partial Order; First Attempts with the new PyHasse-Program L_eval. MATCH Commun.Math.Comput.Chem., 2018, 80, 745-768.
[53]
Bruggemann, R.; Carlsen, L. Incomparable-What now? MATCH Commun.Math.Comput.Chem., 2014, 71, 699-714.
[55]
Bruggemann, R.; Carlsen, L. Incomparable - What Now III. Incomparabilities, Elucidated by a Simple Version of ELECTRE III and a Fuzzy Partial Order Approach. MATCH Commun.Math.Comput.Chem., 2015, 73, 277-302.
[57]
Bruggemann, R.; Voigt, K. Antichains in partial order, example: pollution in a German region by Lead, Cadmium, Zinc and Sulfur in the herb layer. MATCH Commun.Math.Comput.Chem., 2012, 67, 731-744.
[62]
Annoni, P.; Fattore, M.; Bruggemann, R. 2011 A Multi-Criteria
Fuzzy Approach for Analyzing Poverty structure. Statistica & Applicazioni,
special issue, 2011, 7-30.
[64]
Carlsen, L.; Bruggemann, R. An Analysis of the “Failed States Index” by Partial Order Methodology. J.of Soc. Struct (JOSS), 2014, 14, 1-31.
[69]
Fattore, M.; Maggino, F.; Greselin, F. 2011 a. Socio-economic
evaluation with ordinal variables: in-tegrating and poset approaches.
Statistica & Applicazioni, 2011, special issue, 31-42.
[73]
Mucha, H-J. Clustering Techniques accompanied by Matrix Reordering Techniques.Order Theoretical Tools in Environmental Sciences - Order Theory (Hasse diagram technique) Meets Multivariate Statistics; Voigt, K; Welzl, G., Ed.; Shaker-Verlag: Aachen, 2002, pp. 129-140.
[75]
Bruggemann, R.; Restrepo, G.; Voigt, K.; Annoni, P. Weighting Intervals and Ranking. Exemplified by Leaching Potential of Pesticides. MATCH Commun.Math.Comput.Chem., 2013, 69, 413-432.
[76]
Bruggemann, R.; Carlsen, L. Partial Order and Inclusion of Stakeholder’s Knowledge. MATCH Commun.Math.Comput.Chem., 2018, 80, 769-791.
[77]
Bruggemann, R. Indikatoren, partielle Ordnungen und Entscheidungsträger.Simulation in Umwelt- und Geowissenschaften, Wittmann, J; Berlin, W., Ed.; Shaker: Aachen, Berlin, 2017, pp. 9-18.