Gene Therapy of Anderson-Fabry Disease

Page: [3 - 5] Pages: 3

  • * (Excluding Mailing and Handling)

[1]
Ruiz de Garibay AP, Solinís MA, Rodríguez-Gascón A. Gene therapy for Fabry disease: A review of the literature. BioDrugs 2013; 27: 237-46.
[2]
Tuttolomondo A, Simonetta I, Duro G, et al. Inter-familial and intra-familial phenotypic variability in three Sicilian families with Anderson-Fabry disease. Oncotarget 2017; 8(37): 61415-24.
[3]
Tuttolomondo A, Pecoraro R, Simonetta I, et al. Neurological complications of Anderson-Fabry disease. Curr Pharm Des 2013; 19(33): 6014-30.
[4]
Tuttolomondo A, Pecoraro R, Simonetta I, et al. Anderson-Fabry disease: A multiorgan disease. Curr Pharm Des 2013; 19(33): 5974-96.
[5]
Weidemann F, Niemann M, Breunig F, et al. Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy: Evidence for a better outcome with early treatment. Circulation 2009; 119(4): 524-9.
[6]
Yasuda M, Shabbeer J, Osawa M, Desnick RJ. Desnick: Fabry Disease: Novel a-Galactosidase A 3-Terminal mutations result in multiple transcripts due to aberrant 3-End formation. Am J Hum Genet 2003; 73(1): 162-73.
[7]
Germain DP. Fabry disease. Orphanet J Rare Dis 2010; 5: 30.
[8]
Oder D, Üçeyler N, Liu D, et al. Organ manifestations and long-term outcome of Fabry disease in patients with the GLA haplotype D313Y. BMJ Open 2016; 6(4): e010422.
[9]
Palhais B, Dembic M, Sabaratnam R, et al. The prevalent deep intronic c. 639+919 G>A GLA mutation causes pseudoexon activation and Fabry disease by abolishing the binding of hnRNPA1 and hnRNP A2/B1 to a splicing silencer. Mol Genet Metab 2016; 119(3): 258-69.
[10]
Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013; 341(6148): 1233158.
[11]
Biffi A, Gentner BR, Naldini L. Gene vector WO 2010125471 (2010). Available from: https://patentscope.wipo.int/search/en/captcha/captcha.jsf
[12]
Jung SC, Han IP, Limaye A, et al. Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc Natl Acad Sci USA 2001; 98(5): 2676-81.
[13]
Takahashi H, Hirai Y, Migita M, et al. Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer. Proc Natl Acad Sci USA 2002; 99(21): 13777-82.
[14]
Nakamura G, Maruyama H, Ishii S, et al. Naked plasmid DNA-based alpha-galactosidase A gene transfer partially reduces systemic accumulation of globotriaosylceramide in Fabry mice. Mol Biotechnol 2008; 38(2): 109-19.
[15]
Li C, Ziegler RJ, Cherry M, et al. Adenovirus-transduced lung as a portal for delivering alpha-galactosidase A into systemic circulation for Fabry disease. Mol Ther 2002; 5(6): 745-54.
[16]
Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther 2016; 24(3): 430-46.
[17]
Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 2015; 26(7): 443-51.
[18]
Ziegler RJ, Lonning SM, Li C, et al. Improved adeno-associated viral vectors for gene therapy of Fabry disease. Mol Ther 2002; 5(5): S91.
[19]
Kaissarian N, Kang J, Shu L, Ferraz MJ, Aerts JM, Shayman JA. Dissociation of globotriaosylceramide and impaired endothelial function in α-galactosidase-A deficient EA.hy926 cells. Mol Genet Metab 2018; 125(4): 338-44.