International Publication Trends in Proteasome Inhibitors: From Tools for Cell Biologists to Anticancer Agents

Page: [1031 - 1039] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: There has been increased interest in the research of proteasome inhibitors for more than two decades. Hotspots in this field are constantly changing.

Objective: This study aimed to investigate trends in proteasome inhibitors research from 1992 to 2018 and compare the contributions of such research from different countries and authors.

Methods: We used Excel 2013 and VoSviewer to analyze bibliometric data on the subject of proteasome inhibitors, including the number of publications, citations frequency, H-index, and country contributions and hotspots (keywords of popular scientific fields).

Results: A total of 3646 articles were included. The USA contributed the largest percentage of articles (1742), with the most citations (90666) and the highest H-index (139). The journal Blood had the most articles. Dana Farber Cancer Institute and Millennium Pharmaceuticals Incorporation were the most contributive institutions. Keywords could be divided into three clusters: Basic experiment, clinical research, and others.

Conclusion: The number of proteasome inhibitors articles has been increasing for the past 27 years. The USA made the largest contribution in this field. Recent studies on the topic of “carfilzomib” are relatively new and should be closely followed in proteasome inhibitors research.

Keywords: Proteasome inhibitors, bibliometric, citation, h-index, hotspots, carfilzomib.

Graphical Abstract

[1]
Tsubuki, S.; Saito, Y.; Tomioka, M.; Ito, H.; Kawashima, S. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J. Biochem., 1996, 119(3), 572.
[2]
Galbiati, F.; Volonte, D.; Minetti, C.; Bregman, D.B.; Lisanti, M.P. Limb-girdle muscular dystrophy (LGMD-1C) mutants of caveolin-3 undergo ubiquitination and proteasomal degradation. Treatment with proteasomal inhibitors blocks the dominant negative effect of LGMD-1C mutanta and rescues wild-type caveolin-3. J. Biochem., 2000, 275(48), 37702-37711.
[3]
Silke, M.; Antje, L.; Verena, S.; Karl, S. Proteasome inhibitors: Poisons and remedies. Med. Res. Rev., 2010, 28(2), 309-327.
[4]
Rock, K.L.; York, I.A.; Saric, T.; Goldberg, A.L. Protein degradation and the generation of MHC class I-presented peptides. Annu. Rev. Immunol., 1999, 17(17), 739-779.
[5]
Adams, J.; Palombella, V.J.; Sausville, E.A.; Johnson, J.; Destree, A.; Lazarus, D.D.; Maas, J.; Pien, C.S.; Prakash, S.; Elliott, P.J. Proteasome inhibitors: A novel class of potent and effective antitumor agents. Cancer Res., 1999, 59(11), 2615-2622.
[6]
Molineaux, S.M. Molecular pathways: Targeting proteasomal protein degradation in cancer. Clin. Cancer Res., 2012, 18(1), 15-20.
[7]
Potts, B.C.; Albitar, M.X.; Anderson, K.C.; Baritaki, S.; Berkers, C.; Bonavida, B.; Chandra, J.; Chauhan, D.; Cusack, J.C., Jr; Fenical, W.; Ghobrial, I.M.; Groll, M.; Jensen, P.R.; Lam, K.S.; Lloyd, G.K.; McBride, W.; McConkey, D.J.; Miller, C.P.; Neuteboom, S.T.; Oki, Y.; Ovaa, H.; Pajonk, F.; Richardson, P.G.; Roccaro, A.M.; Sloss, C.M.; Spear, M.A.; Valashi, E.; Younes, A.; Palladino, M.A. Marizomib, a proteasome inhibitor for all seasons: Preclinical profile and a framework for clinical trials. Curr. Cancer Drug Targets, 2011, 11(3), 254-284.
[8]
Ashok, A.; Damayanthi, D.; Sindhuja, T.; Esteves, S.C.; Avi, H.; Ralf, H.; Shubhadeep, R.; Sheryl, H.; Nicolás, G.P.; Ranjith, R.; Ahmad, M.; Kim, D.L.; Eva, T.; Mourad, A.; Kavindra, K.; Reecha, S.; Saleem, B.; Edmund, K.; Muhammad, A-E.; Jaime, G.; Asher, B. Bibliometrics: Tracking research impact by selecting the appropriate metrics. Asian J. Androl., 2016, 18(2), 296-309.
[9]
Bar-Ilan, J. Informetrics at the beginning of the 21st century-A review. J. Informetrics, 2008, 2(1), 1-52.
[10]
Ekinci, S.; Agilli, M.; Ersen, O.; Ekinci, G.H. Letter to the editor regarding analysis of changing paradigms of management in 179 patients with spinal tuberculosis during a 12-year period and proposal of a new management algorithm. World Neurosurg., 2015, 84(6), 2072.
[11]
Avcu, G.; Sahbudak, B.Z.; Duyu, M.; Akkus, E.; Karapinar, B.; Vardar, F. Thanks to trauma: A delayed diagnosis of pott disease. Pediatr. Emerg. Care, 2015, 31(12), e17-e18. [doi: 10.1097/PEC.0000000000000637].
[12]
King, D.A. The scientific impact of nations. Nature, 2004, 430(6997), 311-316.
[13]
Fu, H.Z.; Wang, M.H.; Ho, Y.S. Mapping of drinking water research: A bibliometric analysis of research output during 1992-2011. Sci. Total Environ., 2013, 443(3), 757-765.
[14]
Bornmann, L.; Daniel, H. The state of h index research: Is the h index the ideal way to measure research performance? EMBO Rep., 2009, 10(1), 2.
[15]
Synnestvedt, M.B.; Chen, C.; Holmes, J.H. CiteSpace II: Visualization and knowledge discovery in bibliographic databases. AMIA Annu. Symp. Proc., 2005, 2005, 724-728.
[16]
Kisselev, A.F.; Goldberg, A.L. Proteasome inhibitors: From research tools to drug candidates. Chem. Biol., 2001, 8(8), 739-758.
[17]
Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A.A.; Dick, L.R.; Grenier, L.; Klunder, J.M.; Ma, Y.T.; Plamondon, L.; Stein, R.L. Potent and selective inhibitors of the proteasome: Dipeptidyl boronic acids. Bioorg. Med. Chem. Lett., 1998, 8(4), 333.
[18]
Orlowski, R.Z.; Voorhees, P.M.; Garcia, R.A.; Hall, M.D.; Kudrik, F.J.; Allred, T. Johri. A.R.; Jones, P.E.; Ivanova, A.; Van Deventer, H.W.; Gabriel, D.A.; Shea, T.C.; Mitchell, B.S.; Adams, J.; Esseltine, D.L.; Trehu, E.G.; Green, M.; Lehman, M.J.; Natoli, S.; Collins, J.M.; Lindley, C.M.; Dees, E.C. Phase I trial of the proteasome inhibitor bortezomib and pegylate liposomal doxorubicin in patients with advanced hematologic malignancies. Blood, 2005, 105(8), 3058.
[19]
Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Assoc. Inf. Sci. Technol., 2016, 67(4), 967-972.
[20]
Li, L.L.; Ding, G.; Feng, N.; Wang, M.H.; Ho, Y.S. Global stem cell research trend: Bibliometric analysis as a tool for mapping of trends from 1991 to 2006. Scientometrics, 2009, 80(1), 39-58.
[21]
Dick, T.P.; Nussbaum, A.K.; Deeg, M.; Heinemeyer, W.; Groll, M.; Schirle, M.; Keilholz, W.; Stevanović, S.; Wolf, D.H.; Huber, R.; Rammensee, H.G.; Schild, H. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem., 1998, 273(40), 25637-25646.
[22]
Kumeda, S.I.; Deguchi, A.; Toi, M.; Omura, S.; Umezawa, K. Induction of G1 arrest and selective growth inhibition by lactacystin in human umbilical vein endothelial cells. Anticancer Res., 1999, 19(5B), 3961-3968.
[23]
Machiels, B.M.; Henfling, M.E.; Gerards, W.L.; Broers, J.L.; Bloemendal, H.; Ramaekers, F.C.; Schutte, B. Detailed analysis of cell cycle kinetics upon proteasome inhibition. Cytometry, 1997, 28(3), 243-252.
[24]
Wang, X.; Luo, H.; Chen, H.; Duguid, W.; Wu, J. Role of proteasomes in T cell activation and proliferation. J. Immunol., 1998, 160(2), 788-801.
[25]
Lopes, U.G.; Erhardt, P.; Yao, R.; Cooper, G.M. p53-dependent induction of apoptosis by proteasome inhibitors. J. Biol. Chem., 1997, 272(20), 12893-12896.
[26]
Li, B.; Dou, Q.P. Bax degradation by the ubiquitin/proteasome-dependent pathway: Involvement in tumor survival and progression. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 3850-3855.
[27]
Meriin, A.B.; Gabai, V.L.; Yaglom, J.; Shifrin, V.I.; Sherman, M.Y. Proteasome inhibitors activate stress kinases and induce Hsp72. Diverse effects on apoptosis. Biol. Chem., 1998, 273(11), 6373-6379.
[28]
Van-Antwerp, D.J.; Martin, S.J.; Verma, I.M.; Green, D.R. Inhibition of TNF-induced apoptosis by NF-kappa B. Trends Cell Biol., 1998, 8(3), 107-111.
[29]
Drexler, H.C.; Risau, W.; Konerding, M.A. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J., 2000, 14(1), 65-77.
[30]
Orlowski, R.; Eswara, J.; Lafond-Walker, A.; Grever, M.; Orlowski, M.; Dang, C. Tumor growth inhibition induced in a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res., 1998, 58(19), 4342-4348.
[31]
An, B.; Goldfarb, R.H.; Siman, R.; Dou, Q.P. Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ., 1998, 5(12), 1062-1075.
[32]
Masdehors, P.; Omura, S.; Merle-Béral, H.; Mentz, F.; Cosset, J.M. Dumont. J.; Magdelénat, H.; Delic, J. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br. J. Haematol., 1999, 105(3), 752-757.
[33]
Drexler, H.C. Activation of the cell death program by inhibition of proteasome function. Proc. Natl. Acad. Sci. USA, 1997, 94(3), 855-860.
[34]
Yao, Q.; Chen, K.; Yao, L.; Lyu, P.H.; Yang, T.A.; Luo, F.; Chen, S.Q.; He, L.Y.; Liu, Z.Y. Scientometric trends and knowledge maps of global health systems research. Health Res. Policy Syst., 2014, 12(1), 1-20.
[35]
O’Connor, O.A.; Stewart, A.K.; Vallone, M.; Molineaux, C.J.; Kunkel, L.A.; Gerecitano, J.F.; Orlowski, R.Z. A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin. Cancer Res., 2009, 15(22), 7085-7091.