Dehydroabietylamine, A Diterpene from Carthamus tinctorious L. Showing Antibacterial and Anthelmintic Effects with Computational Evidence

Page: [231 - 237] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Plant-based drugs provide an outstanding contribution to modern therapeutics, and it is well known that the presence of different phytochemicals is responsible for such pharmacological effects. Carthamus tinctorius L. is one such medicinally important plant whose different solvent extracts have been reported with several pharmacological effects like antibacterial, hepatoprotective, and wound healing. The exploration of phytoconstituents from such a medicinally important plant for different pharmacological effects could produce new and effective drugs to treat human diseases.

Objective: The present study attempts to explore the antibacterial and anthelmintic properties of dehydroabietylamine, a diterpene isolated from Carthamus tinctorius L. followed by the in silico elucidation of its probable mode of action.

Methods: The minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) of dehydroabietylamine were assessed against Staphylococcus aureus and Pseudomonas aeruginosa, using micro- broth dilution method. The anthelmintic activity of was determined to assess the time taken for paralysis and death of Pheretima Posthuma at different concentrations. Additionally, molecular docking study was conducted to understand the interaction between dehydroabietylamine with target proteins identified for both antibacterial and anthelmintic activity viz., glucosamine-6-phosphate synthase and β-Tubulin, respectively.

Results: The dehydroabietylamine showed the significant MIC for S. aureus (12.5 μg/ml) and P. aeruginosa (6.25μg/ml), respectively. The result of anthelmintics effect of dehydroabietylamine was found to be dosedependent and compared to the standard drug, albendazole.

Conclusion: The interactions of dehydroabietylamine with the two target proteins with high binding affinity indicated the probable inhibition of target proteins, which could be the cause for prominent antibacterial and antihelminthic effects.

Keywords: Carthamus tinctorius L., dehydroabietylamine, glucosamine-6-phosphate synthase, β-Tubulin, docking, helminth, bactericidal.

Graphical Abstract

[1]
Feher, M.; Schmidt, J.M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci., 2003, 43(1), 218-227.
[http://dx.doi.org/10.1021/ci0200467] [PMID: 12546556]
[2]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[3]
David, B.; Wolfender, J-L.; Dias, D.A. The Pharmaceutical Industry and Natural Products: Historical Status and New Trends. Phytochem. Rev., 2014, 14(2), 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[4]
Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv. Nutr., 2011, 2(1), 32-50.
[http://dx.doi.org/10.3945/an.110.000117] [PMID: 22211188]
[5]
Eder, J.; Herrling, P.L. Trends in Modern Drug Discovery.In Handbook of Experimental Pharmacology, 2016, 232, pp. 3-22.
[6]
Ullah, H.; Ali, S. Classification of Anti‐Bacterial Agents and Their Functions.In Antibacterial Agents, 2017.
[http://dx.doi.org/10.5772/intechopen.68695]
[7]
Milewski, S. Glucosamine-6-phosphate synthase--the multi-facets enzyme. Biochim. Biophys. Acta, 2002, 1597(2), 173-192.
[http://dx.doi.org/10.1016/S0167-4838(02)00318-7] [PMID: 12044898]
[8]
Köhler, P. The biochemical basis of anthelmintic action and resistance. Int. J. Parasitol., 2001, 31(4), 336-345.
[http://dx.doi.org/10.1016/S0020-7519(01)00131-X] [PMID: 11400692]
[9]
San Feliciano, A.; Gordaliza, M.; Salinero, M.A.; Miguel del Corral, J.M. Abietane acids: sources, biological activities, and therapeutic uses. Planta Med., 1993, 59(6), 485-490.
[http://dx.doi.org/10.1055/s-2006-959744] [PMID: 8302943]
[10]
Paramesha, M.; Ramesh, C.K.; Krishna, V.; Ravi Kumar, Y.S.; Parvathi, K.M. Hepatoprotective and in vitro antioxidant effect of Carthamus tinctorious L, var Annigeri-2-, an oil-yielding crop, against CCl(4) -induced liver injury in rats. Pharmacogn. Mag., 2011, 7(28), 289-297.
[http://dx.doi.org/10.4103/0973-1296.90406] [PMID: 22262931]
[11]
González, M.A. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur. J. Med. Chem., 2014, 87, 834-842.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.023] [PMID: 25440884]
[12]
Paramesha, M.; Ramesh, C.K.; Krishna, V.; Kumar Swamy, H.M.; Aditya Rao, S.J.; Hoskerri, J. Effect of Dehydroabietylamine in Angiogenesis and GSK3-β Inhibition during Wound Healing Activity in Rats. Med. Chem. Res., 2015, 24(1), 295-303.
[http://dx.doi.org/10.1007/s00044-014-1110-1]
[13]
Paramesha, M.; Ramesh, C.K.; Krishna, V. Studies on Anthelmintic, Antibacterial and Antiviral Activity of Methanol Extract from Leaves of Carthamus Tinctorius L., Annigere-2. Bioscan, 2009, 4(2), 301-304.
[14]
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 2015.
[15]
Shahidi, F.; Naczk, M. Food Phenolics: Sources, Chemistry, Effects, Applications. Food Chem., 1996, 57, 481-482.
[16]
Akinyemi, K.O.; Oladapo, O.; Okwara, C.E.; Ibe, C.C.; Fasure, K.A. Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureu activity. BMC Complement. Altern. Med., 2005, 5(1), 6.
[http://dx.doi.org/10.1186/1472-6882-5-6] [PMID: 15762997]
[17]
Zaman, V. ATLAS of Medical_Parasitology, 2nd ed; ADIS Health Science Press, 1984.
[18]
Ghosh, T.; Maity, T.K.; Swain, P.K.; Bose, A. PHCOG MAG.: Short Communication Anthelmintic and Antimicrobial Activity of Enhydra Fluctuans Lour. Aerial Parts. Pharmacogn. Mag., 2007, 11(11), 204-208.
[19]
Weldemariam Getahun, Y. In Vitro Anthelmintic Efficacy of Fractions from Plumbago Zeylanica L (Family-Plumbaginnaceae) Root Extract Am. J. Life Sci, 2015, 3, pp. (3) 134-142
[20]
Wojciechowski, M.; Milewski, S.; Mazerski, J.; Borowski, E. Glucosamine-6-phosphate synthase, a novel target for antifungal agents. Molecular modelling studies in drug design. Acta Biochim. Pol., 2005, 52(3), 647-653.
[http://dx.doi.org/10.18388/abp.2005_3425] [PMID: 16082410]
[21]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[http://dx.doi.org/10.1016/j.bpj.2011.10.024] [PMID: 22098752]
[22]
Gasteiger, J.; Marsili, M. Iterative Partial Equalization of Orbital Electronegativity-a Rapid Access to Atomic Charges. Tetrahedron, 1980, 36(22), 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[23]
Sanner, M.F. Python: a programming language for software integration and development. J. Mol. Graph. Model., 1999, 17(1), 57-61.
[PMID: 10660911]
[24]
Aditya Rao, S. J.; Jeevitha, B.; Smitha, R.; Ramesh, C. K.; Paramesha, M.; Jamuna, K. S. Wound Healing Activity from the Leaf Extracts of Morus Laevigata and in Silico Binding Studies from Its Isolates with Gsk 3-β 2015, 4(4), 1686-1696.
[25]
Sanner, M.F.; Olson, A.J.; Spehner, J.C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers, 1996, 38(3), 305-320.
[http://dx.doi.org/10.1002/(SICI)1097-0282(199603)38:3<305:AID-BIP4>3.0.CO;2-Y] [PMID: 8906967]
[26]
Nitha, B.; Remashree, A.B.; Balachandran, I. Antibacterial Activity Of Some Selected Indian Medicinal Plants. Int. J. Pharm. Sci. Res., 2012, 3(7), 2038-2042.
[27]
Hamilton, W.A. The mechanism of the bacteriostatic action of tetrachlorosalicylanilide: a Membrane-active antibacterial compound. J. Gen. Microbiol., 1968, 50(3), 441-458.
[http://dx.doi.org/10.1099/00221287-50-3-441] [PMID: 4870833]
[28]
Ghosh, S.; Blumenthal, H.J.; Davidson, E.; Roseman, S. Glucosamine metabolism. V. Enzymatic synthesis of glucosamine 6-phosphate. J. Biol. Chem., 1960, 235, 1265-1273.
[PMID: 13827775]
[29]
Mouilleron, S.; Badet-Denisot, M.A.; Badet, B.; Golinelli-Pimpaneau, B. Dynamics of glucosamine-6-phosphate synthase catalysis. Arch. Biochem. Biophys., 2011, 505(1), 1-12.
[http://dx.doi.org/10.1016/j.abb.2010.08.008] [PMID: 20709015]
[30]
Raghavendra, S.; Aditya Rao, S.J.; Kumar, V.; Ramesh, C.K. Multiple ligand simultaneous docking (MLSD): A novel approach to study the effect of inhibitors on substrate binding to PPO Comput. Biol. Chem, 2015, 59((Pt A)), 81-86.
[http://dx.doi.org/10.1016/j.compbiolchem.2015.09.008 ] [PMID: 26414950]
[31]
Aditya Rao, S.J.; Ramesh, C.K.; Mahmood, R.; Prabhakar, B.T. Anthelmintic and Antimicrobial Activities in Some Species of Mulberry. Int. J. Pharm. Pharm. Sci., 2012, 4(5), 335-338.
[32]
Athanasiadou, S.; Kyriazakis, I.; Jackson, F.; Coop, R.L. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: in vitro and in vivo studies. Vet. Parasitol., 2001, 99(3), 205-219.
[http://dx.doi.org/10.1016/S0304-4017(01)00467-8] [PMID: 11502368]
[33]
Martin, R.; Robertson, P.A. Bjorn. H. Target Sites of Anthelmintics. Parasitology, 1997, 114(7), 111-124.
[http://dx.doi.org/10.1017/S0031182097001029]
[34]
Lacey, E. Mode of action of benzimidazoles. Parasitol. Today (Regul. Ed.); , 1990,; 6, (4), 112-115.
[http://dx.doi.org/10.1016/0169-4758(90)90227-U] [PMID: 15463312]
[35]
Taman, A.; Azab, M. Present-day anthelmintics and perspectives on future new targets. Parasitol. Res., 2014, 113(7), 2425-2433.
[http://dx.doi.org/10.1007/s00436-014-3969-7] [PMID: 24894082]
[36]
Bueding, E. Some Biochemical Effects of Anthelmintic Drugs. Biochemical Pharmacology, 1969, 1541-1547-3.
[http://dx.doi.org/ 10.1016/0006-2952(69)90140-3]
[37]
Martin, R.J. Modes of action of anthelmintic drugs. Vet. J., 1997, 154(1), 11-34.
[http://dx.doi.org/10.1016/S1090-0233(05)80005-X] [PMID: 9265850]
[38]
Shruthi, S.D.; Padmalatha Rai, S.; Ramachandra, Y.L. Isolation, Characterization, Antibacterial, Antihelminthic, and in Silico Studies of Polyprenol from Kirganelia Reticulata Baill. Med. Chem. Res., 2013, 22(6), 2938-2945.
[http://dx.doi.org/10.1007/s00044-012-0295-4]