Current Computer-Aided Drug Design

Author(s): Daryoush Joudaki and Fatemeh Shafiei*

DOI: 10.2174/1573409915666190227230744

QSPR Models to Predict Thermodynamic Properties of Cycloalkanes Using Molecular Descriptors and GA-MLR Method

Page: [6 - 16] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Aims and Objectives: QSPR models establish relationships between different types of structural information to their observed properties. In the present study the relationship between the molecular descriptors and quantum properties of cycloalkanes is represented.

Materials and Methods: Genetic Algorithm (GA) and Multiple Linear Regressions (MLR) were successfully developed to predict quantum properties of cycloalkanes. A large number of molecular descriptors were calculated with Dragon software and a subset of calculated descriptors was selected with a genetic algorithm as a feature selection technique. The quantum properties consist of the heat capacity (Cv)/ Jmol-1K-1 entropy(S)/ Jmol-1K-1 and thermal energy(Eth)/ kJmol-1 were obtained from quantum-chemistry technique at the Hartree-Fock (HF) level using the ab initio 6-31G* basis sets.

Results: The Genetic Algorithm (GA) method was used to select important molecular descriptors and then they were used as inputs for SPSS software package. The predictive powers of the MLR models were discussed using Leave-One-Out (LOO) cross-validation, leave-group (5-fold)-out (LGO) and external prediction series. The statistical parameters of the training and test sets for GA–MLR models were calculated.

Conclusion: The resulting quantitative GA-MLR models of Cv, S, and Eth were obtained:[r2=0.950, Q2=0.989, r2 ext=0.969, MAE(overall,5-flod)=0.6825 Jmol-1K-1], [r2=0.980, Q2=0.947, r2 ext=0.943, MAE(overall,5-flod)=0.5891Jmol-1K-1], and [r2=0.980, Q2=0.809, r2 ext=0.985, MAE(overall,5-flod)=2.0284 kJmol-1]. The results showed that the predictive ability of the models was satisfactory, and the constitutional, topological indices and ring descriptor could be used to predict the mentioned properties of 103 cycloalkanes.

Keywords: Multiple linear regression, molecular descriptors, genetic algorithm, validation, cycloalkanes, GA-MLR.

Graphical Abstract

[1]
Vollhardt, K.; Peter, C.; Neil, E. schore organic chemistry; Freeman, W. H. NewYork, 5th, ed., 2007.
[2]
McMurry, J.E.; Eric, E.; Simanek, K. Fundamentals of organic chemistry; Brooks Cole, 6th, ed., 2006.
[3]
Devillers, J.; Balaban, A.T. Topological Indices and Related Descriptors in QSAR and QSPR; Gordon and Breadch Sci-ence Pub.: Amsterdam, The Netherland, 1999.
[4]
Diudea, M.V. QSAR/QSPR studies by Molecular Descriptors; Nova Pub.: Huntington, New York, 2001.
[5]
Hessler, G.; Baringhaus, K.H. Artificial Intelligence in Drug Design. Molecules, 2018, 23(10), 2520-2533.
[http://dx.doi.org/10.3390/molecules23102520] [PMID: 30279331]
[6]
Toubaei, A.; Golmohamadi, H.; Dashtbozorgi, Z. QSPR studies for predicting gas to acetone and gas to acetonitrile solvation enthalpies using support vector machine. J. Mol. Liq., 2012, 175, 24-32.
[http://dx.doi.org/10.1016/j.molliq.2012.08.006]
[7]
Raja, G.; Saravanan, K. Quantum chemical and corrosion inhibition studies of an organic compound: 2,5 dichloroan-iline. Rasayan J. Chem., 2015, 8, 8-12.
[8]
Singh, p.; Maken, S. Topological aspects of molecular inter-actions in liquid mixtures of non-electrolytes. Pure Appl. Chem., 1994, 66(3), 449-454.
[http://dx.doi.org/10.1351/pac199466030449]
[9]
Maken, S.; Deshwal, B.R.; Chadha, R.; Singh, K.C.; Kim, H.; Park, J.W. Topological and thermodynamic investigations of molecular interactions in binary mixtures: Molar excess vol-umes and molar excess enthalpies. Fluid Phase Equilib., 2005, 235(1), 42-49.
[http://dx.doi.org/10.1016/j.fluid.2005.06.011]
[10]
Rani, M.; Maken, S. Topological studies of molecular interac-tions of formamide with propanol and butanol at 298.15 K. J. Ind. Eng. Chem., 2012, 18(5), 1694-1704.
[http://dx.doi.org/10.1016/j.jiec.2012.03.011]
[11]
Todeschini, R.; Consonni, V. Handbook of molecular de-scriptors; Wiley-VCH: Weinheim, 2000.
[http://dx.doi.org/10.1002/9783527613106]
[12]
Prana, V.; Rotureau, P.; André, D.; Fayet, G.; Adamo, C. Development of Simple QSPR Models for the Prediction of the Heat of Decomposition of Organic Peroxides. Mol. Inform., 2017, 36(10), 1-9.
[http://dx.doi.org/10.1002/minf.201700024] [PMID: 28402598]
[13]
Shafiei, F.; Arjmand, F. Prediction of the normal boiling points and enthalpy of vaporizations of alcohols and phenols using topological. J. Struct. Chem., 2018, 59, 748-754.
[http://dx.doi.org/10.1134/S0022476618030393]
[14]
Wang, Z.; Cheng, L.P.; Zhang, X.H.; Pang, W.; Li, L.; Zhao, J.L. Design, synthesis and biological evaluation of novel oseltamivir derivatives as potent neuraminidase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(24), 5429-5435.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.003] [PMID: 29141777]
[15]
Smolenskii, E.A.; Ryzhov, A.N.; Bavykin, V.M.; Myshenkova, T.N.; Lapidus, A.L. Octane numbers (ONs) of hydrocarbons: a QSPR study using optimal topological in-dices for the topological equivalents of the ONs. Russ. Chem. Bull., 2007, 56, 1681-1687.
[http://dx.doi.org/10.1007/s11172-007-0262-2]
[16]
Cao, C.; Yuan, H. Topological indices based on vertex, distance, and ring: on the boiling points of paraffins and cycloalkanes. J. Chem. Inf. Comput. Sci., 2001, 41(4), 867-877.
[http://dx.doi.org/10.1021/ci000467t] [PMID: 11500103]
[17]
Stokes, R.H.; Marsh, K.N.; Tomlins, R.P. Enthalpies of exothermic mixing Enthalpies of exothermic mixing measured by the isothermal displacement calorimeter for cyclo-octane + cyclopentane at 25 °C. J. Chem. Thermodyn., 1969, 1, 377-379.
[http://dx.doi.org/10.1016/0021-9614(69)90067-6]
[18]
Ewing, M.B.; Marsh, K.N. Thermodynamics of cycloal-kane+cycloalkane mixtures: comparison with theory. J. Chem. Thermodyn., 1977, 9, 863-871.
[http://dx.doi.org/10.1016/0021-9614(77)90172-0]
[19]
Wang, Z.Y.; Zhai, Z.C.; Wang, L.S. Quantitative Structure‐activity Relationship of Toxicity of Alkyl (1‐phenylsulfonyl) Cycloalkane‐carboxylates Using MLSER Model and Ab initio. QSAR Comb. Sci., 2005, 24, 211-217.
[http://dx.doi.org/10.1002/qsar.200430873]
[20]
Katritzky, A.R.; Slavov, S.H.; Stoyanova-Slavova, I.S.; Kahn, I.; Karelson, M. Quantitative structure-activity relationship (QSAR) modeling of EC50 of aquatic toxicities for Daphnia magna. J. Toxicol. Environ. Health A, 2009, 72(19), 1181-1190.
[http://dx.doi.org/10.1080/15287390903091863] [PMID: 20077186]
[21]
Ponce, Y.M. Total and Local Quadratic Indices of the Molec-ular Pseudograph’s Atom Adjacency Matrix: Applications to the Prediction of Physical Properties of Organic Compounds. Molecules, 2003, 8, 687-726.
[http://dx.doi.org/10.3390/80900687]
[22]
Olariu, T.; Vlaia, V.; Ciubotariu, C.; Dragos, D.; Ciubotariu, D.; Mracec, M. Quantitative relationships for the prediction of the vapor pressure of some hydrocarbons from the van der Waals molecular surface. J. Serb. Chem. Soc., 2015, 80, 659-671.
[http://dx.doi.org/10.2298/JSC140416051O]
[23]
Pourbasheer, E.; Ahmadpour, S.; Zare-Dorabei, R.; Nekoei, M.M. Quantitative structure activity relationship study of p38a MAP kinase inhibitors. Arab. J. Chem., 2017, 10(1), 33-43.
[http://dx.doi.org/10.1016/j.arabjc.2013.05.009]
[24]
Saghaie, L.; Sakhi, H.; Sabzyan, H.; Shahlaei, M.; Shamshiri-an, D. Stepwise MLR and PCR QSAR study of the pharma-ceutical activities of antimalarial3-hydroxypyridinone agents using B3LYP/6-311++ G** descriptors. Med. Chem. Res., 2013, 22, 1679-1688.
[http://dx.doi.org/10.1007/s00044-012-0152-5]
[25]
Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci., 2007, 26(5), 694-701.
[http://dx.doi.org/10.1002/qsar.200610151]
[26]
Cramer, R.D., III; Bunce, J.D.; Patterson, D.E. Frank, e. Cross-validation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies. Mol. Inform., 1988, 7, 18-25.
[27]
Votano, J.R.; Parham, M.; Hall, L.H.; Kier, L.B.; Oloff, S.; Tropsha, A.; Xie, Q.; Tong, W. Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis, 2004, 19(5), 365-377.
[http://dx.doi.org/10.1093/mutage/geh043] [PMID: 15388809]
[28]
Chatterjee, S.; Simonoff, J. Handbook of Regression Analysis; John Wiley & Sons: New York, 2013.
[29]
Neda Ahmadinejad, N.; Shafiei, F. Momeni. Isfahani, T. Quantitative Structure- Property Relationship (QSPR) Investi-gation of Camptothecin Drugs Derivatives. Comb. Chem. High Throughput Screen., 2018, 21, 1-10.
[30]
Shen, J.; Cui, Y.; Gu, J.; Li, Y.; Li, L. A genetic algorithm- back propagation artificial neural network model to quantify the affinity of flavonoids toward P-glycoprotein. Comb. Chem. High Throughput Screen., 2014, 17(2), 162-172.
[http://dx.doi.org/10.2174/1386207311301010002] [PMID: 24206113]
[31]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[32]
Xu, J.; Zhu, L.; Fang, D.; Liu, L.; Bai, Z.; Wang, L.; Xu, W. A simple QSPR model for the prediction of the adsorbability of organic compounds onto activated carbon cloth. SAR QSAR Environ. Res., 2013, 24(1), 47-59.
[http://dx.doi.org/10.1080/1062936X.2012.728997] [PMID: 23066906]
[33]
Rose, K.; Hall, L.H.; Kier, L.B. Modeling blood-brain barrier partitioning using the electrotopological state. J. Chem. Inf. Comput. Sci., 2002, 42(3), 651-666.
[http://dx.doi.org/10.1021/ci010127n] [PMID: 12086527]
[34]
Wold, S.; Erikson, L. Statistical Validation of QSAR Results.Validation Tools. Chemometric Methods in Molecular Design; van de Waterbeemd, H., Ed.; VCH Publishers: New York, 1995, pp. 309-318.