Baicalin-induced Cytotoxicity and Apoptosis in Multidrug-resistant MC3/5FU Mucoepidermoid Carcinoma Cell Line

Page: [1339 - 1347] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Multidrug Resistance (MDR) is a serious hindrance to cancer chemotherapy and profoundly influences the clinical findings. Many Traditional Chinese Medicines (TCM) have been tested with the aim of developing effective resistance modulators or anticancer drugs to overcome the MDR of human cancers.

Methods: The anticancer effect of baicalin on multidrug-resistant MC3/5FU (5-fluorouracil) cells was investigated by MTT test and xenografts in nude mice. Cell apoptosis was studied by transmission electron microscopy, Hoechst-33342 staining, DNA fragmentation detection, and flow cytometry. RT-PCR and Rhodamine 123 efflux assay was also used to detect its effect on ABC drug transporter proteins, ABCB1 (P-glycoprotein, P-gp) and ABCC1 (multidrug resistance protein 1, MRP1).

Results: The results indicate that there was no significant effect of baicalin on ABC transporters expression or efflux function, although it induced potent growth inhibition in MC3/5FU cells. Flow cytometry, Hoechst 33342 staining and transmission electron microscope revealed that baicalin caused MC3/5FU cell death through the induction of apoptosis. It is demonstrated that baicalininduced apoptosis could be mediated by up-regulation of Bax and caspase-3 protein levels and downregulation of Bcl-2 protein levels. In addition, daily intraperitoneal injection of baicalin (100 and 200 mg/kg) for 2 weeks significantly inhibited the growth of MC3/5FU cells xenografts in nude mice.

Conclusion: Our results suggest that baicalin possesses considerable cytotoxic activity in multidrug resistance MC3/5FU cells in vitro and in vivo.

Keywords: Baicalin, mucoepidermoid carcinoma, multidrug resistance, bcl-2, bax, apoptosis, xenografts.

Graphical Abstract

[1]
Vargas, P.A.; Cheng, Y.; Barrett, A.W.; Craig, G.T.; Speight, P.M. Expression of Mcm-2, Ki-67 and geminin in benign and malignant salivary gland tumours. J. Oral Pathol. Med., 2008, 37(5), 309-318.
[http://dx.doi.org/10.1111/j.1600-0714.2007.00631.x] [PMID: 18248354]
[2]
Speight, P.M.; Barrett, A.W. Salivary gland tumours. Oral Dis., 2002, 8(5), 229-240.
[http://dx.doi.org/10.1034/j.1601-0825.2002.02870.x] [PMID: 12363107]
[3]
Aro, K.; Leivo, I.; Mäkitie, A.A. Management and outcome of patients with mucoepidermoid carcinoma of major salivary gland origin: A single institution’s 30-year experience. Laryngoscope, 2008, 118(2), 258-262.
[http://dx.doi.org/10.1097/MLG.0b013e31815a6b0b] [PMID: 18030166]
[4]
Aro, K.; Leivo, I.; Grénman, R.; Mäkitie, A.A. Paediatric salivary gland cancer in Finland. Int. J. Pediatr. Otorhinolaryngol., 2012, 76(9), 1304-1307.
[http://dx.doi.org/10.1016/j.ijporl.2012.05.024] [PMID: 22721526]
[5]
Yang, S.; Guo, L.J. Microencapsulation of low-passage poorly-differentiated human mucoepidermoid carcinoma cells by alginate microcapsules: In vitro profiling of angiogenesis-related molecules. Cancer Cell Int., 2017, 17, 106.
[http://dx.doi.org/10.1186/s12935-017-0479-6] [PMID: 29200966]
[6]
Cai, B-L.; Li, Y.; Shen, L-L.; Zhao, J-L.; Liu, Y.; Wu, J-Z.; Liu, Y.P.; Yu, B. Nuclear multidrug resistance-related protein 1 is highly associated with better prognosis of human mucoepidermoid carcinoma through the suppression of cell proliferation, migration and invasion. PLoS One, 2016, 11(2)e0148223
[http://dx.doi.org/10.1371/journal.pone.0148223] [PMID: 26829120]
[7]
Healey, W.V.; Perzin, K.H.; Smith, L. Mucoepidermoid carcinoma of salivary gland origin. Classification, clinical-pathologic correlation, and results of treatment. Cancer, 1970, 26(2), 368-388.
[http://dx.doi.org/10.1002/1097-0142(197008)26:2<368:AID-CNCR2820260219>3.0.CO;2-K] [PMID: 5451215]
[8]
Thorvaldsson, S.E.; Beahrs, O.H.; Woolner, L.B.; Simons, J.N. Mucoepidermoid tumors of the major salivary glands. Am. J. Surg., 1970, 120(4), 432-438.
[http://dx.doi.org/10.1016/S0002-9610(70)80002-2] [PMID: 5507327]
[9]
Vattemi, E.; Graiff, C.; Sava, T.; Pedersini, R.; Caldara, A.; Mandarà, M. Systemic therapies for recurrent and/or metastatic salivary gland cancers. Expert Rev. Anticancer Ther., 2008, 8(3), 393-402.
[http://dx.doi.org/10.1586/14737140.8.3.393] [PMID: 18366287]
[10]
Chen, Y.C.; Chow, J.M.; Lin, C.W.; Wu, C.Y.; Shen, S.C. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6. Toxicol. Appl. Pharmacol., 2006, 216(2), 263-273.
[http://dx.doi.org/10.1016/j.taap.2006.05.008] [PMID: 16814338]
[11]
Wan, J.Y.; Gong, X.; Zhang, L.; Li, H.Z.; Zhou, Y.F.; Zhou, Q.X. Protective effect of baicalin against lipopolysaccharide/D-galactosamine-induced liver injury in mice by up-regulation of heme oxygenase-1. Eur. J. Pharmacol., 2008, 587(1-3), 302-308.
[http://dx.doi.org/10.1016/j.ejphar.2008.02.081] [PMID: 18420187]
[12]
Xue, D.; Zhang, W.; Zhang, Y.; Wang, H.; Zheng, B.; Shi, X. Adjusting effects of baicalin for nuclear factor-kappa B and tumor necrosis factor-alpha on rats with caerulein-induced acute pancreatitis. Mediators Inflamm., 2006, 2006(5), 26295.
[13]
Baylor, N.W.; Fu, T.; Yan, Y.D.; Ruscetti, F.W. Inhibition of human T cell leukemia virus by the plant flavonoid baicalin (7-glucuronic acid, 5,6-dihydroxyflavone). J. Infect. Dis., 1992, 165(3), 433-437.
[http://dx.doi.org/10.1093/infdis/165.3.433] [PMID: 1371535]
[14]
Chenn, S. In vitro mechanism of PC SPES. Urology, 2001, 58(2)(Suppl. 1), 28-35.
[http://dx.doi.org/10.1016/S0090-4295(01)01239-0] [PMID: 11502443]
[15]
Ikemoto, S.; Sugimura, K.; Yoshida, N.; Yasumoto, R.; Wada, S.; Yamamoto, K.; Kishimoto, T. Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology, 2000, 55(6), 951-955.
[http://dx.doi.org/10.1016/S0090-4295(00)00467-2] [PMID: 10840124]
[16]
Kitamura, K.; Honda, M.; Yoshizaki, H.; Yamamoto, S.; Nakane, H.; Fukushima, M.; Ono, K.; Tokunaga, T. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res., 1998, 37(2), 131-140.
[http://dx.doi.org/10.1016/S0166-3542(97)00069-7] [PMID: 9588845]
[17]
Cai, B.L.; Xu, X.F.; Fu, S.M.; Shen, L.L.; Zhang, J.; Guan, S.M.; Wu, J.Z. Nuclear translocation of MRP1 contributes to multidrug resistance of mucoepidermoid carcinoma. Oral Oncol., 2011, 47(12), 1134-1140.
[http://dx.doi.org/10.1016/j.oraloncology.2011.08.005] [PMID: 21903448]
[18]
Cai, B.; Miao, Y.; Liu, Y.; Xu, X.; Guan, S.; Wu, J.; Liu, Y. Nuclear multidrug-resistance related protein 1 contributes to multidrug-resistance of mucoepidermoid carcinoma mainly via regulating multidrug-resistance protein 1: A human mucoepidermoid carcinoma cells model and Spearman’s rank correlation analysis. PLoS One, 2013, 8(8)e69611
[http://dx.doi.org/10.1371/journal.pone.0069611] [PMID: 24013781]
[19]
Wen, D.S.; Zhu, X.L.; Guan, S.M.; Wu, Y.M.; Yu, L.L.; Wu, J.Z. Silencing of CXCR4 inhibits the proliferation, adhesion, chemotaxis and invasion of salivary gland mucoepidermoid carcinoma Mc3 cells in vitro. Oral Oncol., 2008, 44(6), 545-554.
[http://dx.doi.org/10.1016/j.oraloncology.2007.06.016] [PMID: 17936060]
[20]
Xu, X.F.; Cai, B.L.; Guan, S.M.; Li, Y.; Wu, J.Z.; Wang, Y.; Liu, B. Baicalin induces human mucoepidermoid carcinoma Mc3 cells apoptosis in vitro and in vivo. Invest. New Drugs, 2011, 29(4), 637-645.
[http://dx.doi.org/10.1007/s10637-010-9402-x] [PMID: 20204673]
[21]
Xu, X.F.; Zhang, T.L.; Jin, S.; Wang, R.; Xiao, X.; Zhang, W.D.; Wang, P.Y.; Wang, X.J. Ardipusilloside I induces apoptosis by regulating Bcl-2 family proteins in human mucoepidermoid carcinoma Mc3 cells. BMC Complement. Altern. Med., 2013, 13(1), 322.
[http://dx.doi.org/10.1186/1472-6882-13-322] [PMID: 24256941]
[22]
Liu, B.; Qiu, Q.; Zhao, T.; Jiao, L.; Li, Y.; Huang, W.; Qian, H. 6,7-Dimethoxy-2-2-[4-(1H-1,2,3-triazol-1-yl)phenyl]ethyl-1,2,3,4-tetrahydroisoq uinolines as superior reversal agents for p-glycoprotein-mediated multidrug resistance. ChemMedChem, 2015, 10(2), 336-344.
[http://dx.doi.org/10.1002/cmdc.201402463] [PMID: 25470220]
[23]
Ji, B.S.; He, L. CJY, an isoflavone, reverses P-glycoprotein-mediated multidrug-resistance in doxorubicin-resistant human myelogenous leukaemia (K562/DOX) cells. J. Pharm. Pharmacol., 2007, 59(7), 1011-1015.
[http://dx.doi.org/10.1211/jpp.59.7.0014] [PMID: 17637197]
[24]
Singh, M.; Tyagi, S.; Bhui, K.; Prasad, S.; Shukla, Y. Regulation of cell growth through cell cycle arrest and apoptosis in HPV 16 positive human cervical cancer cells by tea polyphenols. Invest. New Drugs, 2010, 28(3), 216-224.
[http://dx.doi.org/10.1007/s10637-009-9240-x] [PMID: 19271153]
[25]
Ikezoe, T.; Chen, S.S.; Heber, D.; Taguchi, H.; Koeffler, H.P. Baicalin is a major component of PC-SPES which inhibits the proliferation of human cancer cells via apoptosis and cell cycle arrest. Prostate, 2001, 49(4), 285-292.
[http://dx.doi.org/10.1002/pros.10024] [PMID: 11746275]
[26]
Jiao, K.; Wang, M.Q.; Niu, L.N.; Dai, J.; Yu, S.B.; Liu, X.D.; Wang, G.W. Death and proliferation of chondrocytes in the degraded mandibular condylar cartilage of rats induced by experimentally created disordered occlusion. Apoptosis, 2009, 14(1), 22-30.
[http://dx.doi.org/10.1007/s10495-008-0279-5] [PMID: 19052875]
[27]
Shu, Y.J.; Bao, R.F.; Wu, X.S.; Weng, H.; Ding, Q.; Cao, Y.; Li, M.L.; Mu, J.S.; Wu, W.G.; Ding, Q.C.; Liu, T.Y.; Jiang, L.; Hu, Y.P.; Tan, Z.J.; Wang, P.; Liu, Y.B. Baicalin induces apoptosis of gallbladder carcinoma cells in vitro via a mitochondrial-mediated pathway and suppresses tumor growth in vivo. Anticancer. Agents Med. Chem., 2014, 14(8), 1136-1145.
[http://dx.doi.org/10.2174/1871520614666140223191626] [PMID: 24568162]
[28]
Shieh, D.E.; Cheng, H.Y.; Yen, M.H.; Chiang, L.C.; Lin, C.C. Baicalin-induced apoptosis is mediated by Bcl-2-dependent, but not p53-dependent, pathway in human leukemia cell lines. Am. J. Chin. Med., 2006, 34(2), 245-261.
[http://dx.doi.org/10.1142/S0192415X06003801] [PMID: 16552836]
[29]
Irani, S.; Jafari, B. Expression of vimentin and CD44 in mucoepidermoid carcinoma: A role in tumor growth. Indian J. Dent. Res., 2018, 29(3), 333-340.
[http://dx.doi.org/10.4103/ijdr.IJDR_184_17] [PMID: 29900918]
[30]
Palko-Labuz, A.; Sroda-Pomianek, K.; Uryga, A.; Kostrzewa-Suslow, E.; Michalak, K. Anticancer activity of baicalein and luteolin studied in colorectal adenocarcinoma LoVo cells and in drug-resistant LoVo/Dx cells. Biomed. Pharmacother., 2017, 88, 232-241.
[http://dx.doi.org/10.1016/j.biopha.2017.01.053] [PMID: 28110189]
[31]
Gao, Y.; Snyder, S.A.; Smith, J.N.; Chen, Y.C. Anticancer properties of baicalein: A review. Med. Chem. Res., 2016, 25(8), 1515-1523.
[http://dx.doi.org/10.1007/s00044-016-1607-x] [PMID: 28008217]
[32]
Bie, B.; Sun, J.; Guo, Y.; Li, J.; Jiang, W.; Yang, J.; Huang, C.; Li, Z. Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma. Biomed. Pharmacother., 2017, 93, 1285-1291.
[http://dx.doi.org/10.1016/j.biopha.2017.07.068] [PMID: 28747003]
[33]
El-Gogary, R.I.; Gaber, S.A.G.; Nasr, M. Polymeric nanocapsular baicalin: Chemometric optimization, physicochemical characterization and mechanistic anticancer approaches on breast cancer cell lines. Sci. Rep., 2019, 9, 11064.
[34]
Childs, S.; Ling, V. The MDR superfamily of genes and its biological implications. Important Adv. Oncol., 1994, 21-36.
[PMID: 7911445]
[35]
Morrow, C.S.; Smitherman, P.K.; Diah, S.K.; Schneider, E.; Townsend, A.J. Coordinated action of glutathione S-transferases (GSTs) and multidrug resistance protein 1 (MRP1) in antineoplastic drug detoxification. Mechanism of GST A1-1- and MRP1-associated resistance to chlorambucil in MCF7 breast carcinoma cells. J. Biol. Chem., 1998, 273(32), 20114-20120.
[http://dx.doi.org/10.1074/jbc.273.32.20114] [PMID: 9685354]
[36]
Cole, S.P.; Bhardwaj, G.; Gerlach, J.H.; Mackie, J.E.; Grant, C.E.; Almquist, K.C.; Stewart, A.J.; Kurz, E.U.; Duncan, A.M.; Deeley, R.G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 1992, 258(5088), 1650-1654.
[http://dx.doi.org/10.1126/science.1360704] [PMID: 1360704]
[37]
Glavinas, H.; Krajcsi, P.; Cserepes, J.; Sarkadi, B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr. Drug Deliv., 2004, 1(1), 27-42.
[http://dx.doi.org/10.2174/1567201043480036] [PMID: 16305368]
[38]
Leslie, E.M.; Deeley, R.G.; Cole, S.P. Multidrug resistance proteins: Role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol., 2005, 204(3), 216-237.
[http://dx.doi.org/10.1016/j.taap.2004.10.012] [PMID: 15845415]
[39]
Reed, J.C. Bcl-2: Prevention of apoptosis as a mechanism of drug resistance. Hematol. Oncol. Clin. North Am., 1995, 9(2), 451-473.
[http://dx.doi.org/10.1016/S0889-8588(18)30104-7] [PMID: 7642473]
[40]
Reed, J.C. Bcl-2 family proteins: Regulators of chemoresistance in cancer. Toxicol. Lett., 1995, 82-83, 155-158.
[http://dx.doi.org/10.1016/0378-4274(95)03551-6] [PMID: 8597045]
[41]
Morrow, C.S.; Cowan, K.H. Glutathione S-transferases and drug resistance. Cancer Cells, 1990, 2(1), 15-22.
[PMID: 2201336]
[42]
Beck, W.T.; Danks, M.K.; Wolverton, J.S.; Kim, R.; Chen, M. Drug resistance associated with altered DNA topoisomerase II. Adv. Enzyme Regul., 1993, 33, 113-127.
[http://dx.doi.org/10.1016/0065-2571(93)90012-3] [PMID: 8395133]
[43]
Sun, Q.; Zhang, L.; Guo, S.; Zheng, M.; Yang, D.; Zheng, C.; Wu, J.; Liu, J.; Wu, J. Tiaozhi Tongmai Granules reduce atherogenesis and promote the expression of ATP-binding cassette transporter A1 in rabbit atherosclerotic plaque macrophages and the liver. J. Trad. Chin. Med. Sci., 2014, 1(1), 38-48.
[http://dx.doi.org/10.1016/j.jtcms.2014.11.007]
[44]
Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab. Dispos., 2014, 42(4), 623-631.
[http://dx.doi.org/10.1124/dmd.113.056176] [PMID: 24492893]